ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES IN THE STATE OF NEW YORK

PRELIMINARY SITE ASSESSMENT Volume 1

Salina Town Landfill Site
Site Number 734036
Town of Salina, Onondaga County

May 1994

Prepared for:

New York State Department of Environmental Conservation

50 Wolf Road, Albany, New York 12233 Langdon Marsh, Acting Commissioner

Division of Hazardous Waste Remediation
Michael J. O'Toole, Jr., P.E., Director

Prepared by:

Ecology and Environment Engineering, P.C.

ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES IN THE STATE OF NEW YORK

PRELIMINARY SITE ASSESSMENT

Salina Town Landfill Site Site Number 734036 Town of Salina, Onondaga County

May 1994

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 Wolf Road, Albany, New York 12233 Langdon Marsh, Acting Commissioner

Division of Hazardous Waste Remediation Michael J. O'Toole, Jr., P.E., Director

ecology and environment engineering, p.c.

BUFFALO CORPORATE CENTER 368 PLEASANTVIEW DRIVE, LANCASTER, NEW YORK 14086, TEL. 716/684-8060

TABLE OF CONTENTS

Volume 1

Section					<u>Page</u>
	EXE	CUTIVE	SUMMARY .		1
1	SITE	ASSESS	MENT SUMM	ARY	1-1
	1.1	INTRO	DUCTION		1-1
	1.2	PURPO	OSE		1-1
	1.3	SITE D	ESCRIPTION		1-2
	1.4	HAZA	RDOUS WAST	E SITE DISCUSSION	1-3
	1.5	SUMM	ARY OF PSA	WORK	1-4
	1.6	NYSDI	EC CLASSIFIC	ATION FORMS	1-4
2	SITE	ністов	RY		2-1
3	PSA	TASK D	ISCUSSION	· · · · · · · · · · · · · · · · · · ·	3-1
	3.1	PSA T	ASK 1 REPORT	Γ	3-1
	3.2	PRE-F	ELD INVESTI	GATION	3-2
	3.3	SAMPI	LING ACTIVIT	TES	3-3
		3.3.1	Surface Wate	т	3-3
			3.3.1.1	Surface Water from Ley Creek	3-4
			3.3.1.2	Surface Water from Drainageways	3-5
		3.3.2	Sediment		3-5
		3.3.3	Surface Soil		3-7

LIST OF TABLES

<u>Table</u>		<u>Page</u>
3-1	Sampling and Analysis Summary	3-9
3-2	Organic Compounds Detected in Surface Water Samples from Ley Creek	3-11
3-3	Inorganic Analytes Detected in Surface Water Samples from Ley Creek	3-12
3-4	Organic Compounds Detected in Surface Water Samples from Drainageways	3-13
3-5	Inorganic Analytes Detected in Surface Water Samples from Drainageways	3-14
3-6	Organic Compounds Detected in Sediment Samples	3-15
3-7	Inorganic Analytes Detected in Sediment Samples	3-17
3-8	Organic Compounds Detected in Surface Soil Samples	3-20
3-9	Inorganic Analytes Detected in Surface Soil Samples	3-22
3-10	Organic Compounds Detected in Leachate Samples	3-23
3-11	Inorganic Analytes Detected in Leachate Samples	3-24

LIST OF ILLUSTRATIONS

Figure		Page
1-1	Location Map, Salina Town Landfill	1-10
1-2	Sample Location Map	1-11
3-1	Site Property Boundary Map	3-25

EXECUTIVE SUMMARY

Under the New York State Department of Environmental Conservation (NYSDEC) Superfund Standby Contract, Joseph C. Lu, P.E., P.C. (JCL), a subcontractor to Ecology and Environment Engineering, P.C. (E & E), conducted a preliminary site assessment (PSA) investigation at the Salina Town Landfill site (site number 734036).

The Salina Town Landfill site is located on New York State Route 11 (Wolf Street) in the Town of Salina, Onondaga County, New York. The site is listed on NYSDEC's Registry of Inactive Hazardous Waste Disposal sites as a 50-acre Class 2A site. This is a temporary classification assigned to sites that have inadequate and/or insufficient data to be classified otherwise.

The Salina Town Landfill site is a former municipal landfill used for the disposal of domestic, commercial, and industrial waste. The site stopped accepting municipal waste in 1975, but it was not covered and graded until 1982. Hazardous waste disposal has been documented at the Salina Landfill site in the form of paint sludge, waste paint thinner, and oil-saturated spill sorbents containing polychlorinated biphenyls (PCBs) from General Motors (GM). Other industrial waste disposed of at the site includes unknown drummed wastes from Carrier Corporation.

Previous on-site sampling has been conducted by NYSDEC, Onondaga County Health Department (OCHD), and NUS Corporation for the United States Environmental Protection Agency (EPA). Samples were collected in 1986 and 1987 and included surface and subsurface soil, groundwater, surface water, and sediment from Ley Creek and on-site drainageways. Hazardous wastes associated with documented disposal have been detected at the site in the form of PCBs at levels greater than 50 ppm (ATL 1987). In addition,

hazardous constituents potentially associated with documented disposal have been detected in environmental media at the site.

As part of this PSA, E & E conducted file searches and site inspections (E & E 1992). Fieldwork for the PSA investigation was conducted by JCL and E & E in 1993. At this time, 10 surface water samples, 10 sediment samples, five surface soil samples, and three leachate samples were collected for analysis. Chlorinated organics were detected in surface water and sediment samples from Ley Creek adjacent to the site. PCBs were detected in sediment samples from Ley Creek adjacent to the site. PCBs were also detected in sediment samples from drainage ditches receiving runoff from the site, and in surface soil samples collected from the site. In addition, leachate discharging from the site directly to Ley Creek contained volatile and semivolatile organic compounds and PCBs. The nature and extent of contamination is consistent with the use of the area for disposal of documented municipal, industrial, and hazardous wastes.

A significant threat is indicated by the results of the PSA sampling at the site. Discharges from the site exceed ambient surface water standards. Leachate containing PCBs, volatile organic compounds (VOCs), and heavy metals is discharging directly to Ley Creek. Because of the documented hazardous waste disposal at the site, the levels of hazardous constituents in environmental media at the site, and the significant threat caused by the site, it is recommended that the Salina Town Landfill site be reclassified to a Class 2 site.

1. SITE ASSESSMENT SUMMARY

1.1 INTRODUCTION

Under the New York State Department of Environmental Conservation (NYSDEC) Superfund Standby Contract, Joseph C. Lu, P.E., P.C. (JCL), a subcontractor to Ecology and Environment Engineering, P.C. (E & E), conducted a Preliminary Site Assessment (PSA) at the Salina Town Landfill (site number 734036) site in the Town of Salina, Onondaga County, New York. This report summarizes PSA activities to date.

1.2 PURPOSE

The purpose of the PSA is to provide NYSDEC with the information necessary to properly assess and classify the site according to one of the following categories of hazardous waste sites pursuant to Section 27-1305 of the Environmental Conservation Law:

- Class 1: Causing or presenting an imminent danger or causing irreversible or irreparable damage to the public health or environment—immediate action required;
- Class 2: Significant threat to the public health or environment—action required;
- Class 3: Does not present a significant threat to the public health or environment—action may be deferred;
- Class 4: Site properly closed—requires continued management; or
- Class 5: Site properly closed, no evidence of present or potential adverse impact—no further action required.

If one of the above categories does not apply to the site or if disposal of consequential amounts of hazardous waste was not documented, the site may be deleted from the Registry of Inactive Hazardous Waste Disposal Sites. If data are inadequate and/or insufficient to classify the site, it receives a temporary 2A classification from NYSDEC.

1.3 SITE DESCRIPTION

The Salina Town Landfill site is located on New York State Route 11 (Wolf Street) in the Town of Salina, Onondaga County, New York (see Figures 1-1 and 1-2). The site encompasses approximately 50 acres of land and was used as a municipal landfill for the disposal of domestic, commercial, and industrial waste from prior to 1956 until 1974 (C & S 1972; OCHD 1979; E & E 1992).

The site is bordered by Ley Creek and industrial buildings to the south, the New York State Thruway to the north, Wolf Street and commercial buildings to the east, and an Onondaga County transfer station and sewage pumping station (formerly a sewage treatment plant) to the west (C & S 1972; Town of Salina 1975). The landfill is located in an industrial area, and there are waste disposal areas in the vicinity. Ley Creek historically has had pollution problems due to urban storm runoff and industrial effluent discharges to the creek (O'Brien & Gere 1989; NYSDEC 1986). The General Motors (GM) Fisher Guide plant is located approximately 3 miles upstream of the Salina Landfill site, and the Ley Creek dredging spoils site, which contains polychlorinated biphenyls (PCBs), is located approximately 2 miles upstream (NYSDEC 1992). Residential areas are located approximately 500 feet to the northeast, 4,100 feet to the west, and 5,600 feet to the north (BTSA 1987).

The site is situated in a flood-prone area adjacent to Ley Creek, and it was a wetland prior to landfill operations area (NYSDEC undated a). The nearest New York State-regulated wetlands is located approximately 2,000 feet to the north (SYW-8, Class II wetland). In addition, a Class I wetland (SYE-6) and a Class II wetland (SYW-II) are located approximately 1 mile east and southwest, respectively (NYSDEC undated b). The segment of Ley Creek adjacent to the Salina Landfill site is a Class B stream. The best usage for Class B waters are primary and secondary contact recreation and fishing. These waters are to be suitable for fish propagation and survival (NYCRR 1983). A New York State Department of Health (NYSDOH) Health Advisory currently is in effect against the consumption of fish from Onondaga Lake and its tributaries, including Ley Creek (NYSDEC 1993).

Currently, the site is relatively flat, with the exception of two prominent mounded areas. The site has a grassy cover with clusters of tall, reedy wetlands vegetation present in numerous areas on site, including one of the two mounded areas. During this PSA investigation, leachate was observed discharging from the south side of the landfill to the north bank of Ley Creek. The surface elevation of the site is approximately 10 to 20 feet higher than the water level in Ley Creek. Several utility lines (powerlines, pipeline, sewer lines) traverse the landfill, and refuse exists beneath and above these utility installations. An abandoned sanitary sewer line, owned by Onondaga County, exists under the central portion of the landfill and is oriented in an east/west direction (Paratore 1994). A drainage ditch drains surface water from the site and from a portion of the New York State Thruway to the north through a partially covered 48-inch culvert pipe that discharges to Ley Creek. This drainage ditch was constructed as part of final closure operations to restore proper water flow after landfill operations impaired or blocked the site's original drainageways (C&S 1972).

1.4 HAZARDOUS WASTE SITE DISCUSSION

Six hundred forty tons of paint sludge and 22 tons of waste paint thinner were documented as being disposed of at the Salina Landfill site by GM Fisher Guide Division from 1962 to 1973 (General Motors 1985). PCB-laden wastes in the form of oil-saturated sorbents used in floor cleanups, were disposed of by GM at the Salina Landfill, although the waste was not inventoried or tracked; and therefore, the amount is unknown (Giacobbi; 1986, NYSDOH 1986). Other industrial waste disposed of by GM at Salina Landfill include buffing sludge and fly ash (GM 1992). The fill material used for daily cover and landfill closure operations may have included PCB-contaminated soil since some of the soil was obtained from the Ley Creek dredgings (Kane 1981; OCHD 1970a). Sewage sludge from the Ley Creek sewage treatment plant was used as cover on the landfill for at least a short time, ending in March 1970 (OCHD 1970b).

According to affidavits from waste haulers, drummed wastes from Carrier Corporation's Thompson Road Plant in Syracuse were disposed of at the Salina Landfill from 1974 to 1979 (Hupper 1989). The amount of waste is unknown, and the contents of the drums may have included 2-butanone (methylethylketone), toluene, xylene, and solder flux, among many other substances (Hupper 1989).

Municipal landfilling activities ceased in 1975, but the site was not covered and graded in 1982. Hazardous wastes associated with documented disposal have been documented at the site in the form of PCBs at levels greater than 50 ppm (ATL 1987).

1.5 SUMMARY OF PSA WORK

A PSA Task 1 report for the Salina Landfill site submitted in July 1992 concluded that insufficient information existed to determine whether the site posed a significant threat to human health or the environment. Further investigation was recommended (E & E 1992). Environmental media including surface water, sediment, leachate, and surface soil were sampled. The analyses performed include full Target Compound List (TCL).

During the PSA field investigation, chlorinated organics were detected in surface water and sediment samples from Ley Creek adjacent to the site. PCBs were detected in sediment samples from Ley Creek adjacent to the site. PCBs were also detected in sediment samples from drainage ditches receiving runoff from the site and in a surface soil sample from the site. Leachate from the site discharging directly to Ley Creek contained PCBs, as well as volatile organic compounds (VOCs) and semivolatile organic compounds.

1.6 NYSDEC CLASSIFICATION FORMS

The NYSDEC Registry Site Classification Decision Form, Classification Worksheet and Site Priority Ranking Worksheet are presented on pages 1-5, 1-6 and 1-7. These forms provide information pertinent to the classification of the site in accordance with 6 NYCRR, Part 375.

New York State Department of Environmental Conservation

	Division of Hazardous Waste Remediation								
	REGISTRY SITE CLASSIFICATION DECISION								
1.	Site Name: Salina Town Landfill	2. Site No.: 734036	3	Town/City/	Village:	4. County: Onondaga			
5.	Region: 7	6. Classification	Current:	2a Pro	posed: 2	Modify			
7.	Location of Site (see Figu a. Quadrangle: Syracuse West	b. Site Latitude 43° 05' 22" N	: Lo	ongitude: ° 08' 53" W	c. Tax Ma 73	p Number"			
8.	Briefly Describe the Site (The site encompasses apprindustrial waste from prio PCB-laden wastes, as wel Ley Creek, which has a h	roximately 50 acres or to 1956 to 1975. It is paint sludge, bu	of land and was It underwent gr ffing sludge, pa	ading and capping and the standard and t	ng operations in fly ash. The site	1982. The site receive is bordered on the so	1		
	a. Area: 50 acres c. Completed Pi	b. nase I 🗆 Phase		er: NYD98156 PSA 🗆 RI		PA/SI 🗆 Other			
9.	Hazardous Wastes Dispos From 1962 to 1973, 640 to Code F003) were disposed sorbents for floor cleanup therefore, the amount is u and fly ash. Possible PCI quantities of potentially has 1974 to 1979.	ons of paint sludge (d of by General Mot s were disposed of b nknown. Other pote B-contaminated fill d	ors Fisher Guid y GM at the sit entially hazardo redged from La	le Division. PC te, although the us waste dispose by Creek was us	B-laden wastes in waste was not in ed of by GM at led in daily cover	in the form of oil-satu nventoried or tracked, the site include buffing or operations. Unknow	rated and g sludge vn		
10.	Analytical Data Available a. □ Air ☒ Ground b. Contravention of Stand	dwater 🛛 Sur	face Water alues	⊠ Soil	☐ Waste	□ EPTox □ 1	CCLP		
	Surface Water from Lev 6 Aluminum (100 μg/L): 1 Iron (300 μg/L): 372 - 1 Zinc (30 μg/L): 37.6 - 7	50 - 607 μg/L ,660 μg/L 7.1 μg/L	ards)	Copper (123 μg/ Iron (300 μg/ Cyanide (22 μ	r from Drainage μg/L*): 139 μg L): 421 - 244,(μg/L): 28 μg/L sed on hardness.	000 μg/L	rds)		
	Sediment from Ley Creek PCBs 570 to 2,200 μg/kg Sediment from Drainagew			PCB (0.001 µ	iss D standards) μg/L): 2.5 and 2 μg/L)*: 168 μg	2.6 μg/L			
	PCBs 370 to 7,100 μg/kg)	Iron (300 μg/	L): 72,700 and sed on hardness.	153,000 μg/L			
11.	JUSTIFICATION FOR CA significant threat is indisurface water standards. protected stream. Curren and its tributaries, includin hazardous constituents in that the Salina Town Land	LASSIFICATION I icated by the results Leachate containing tly, a NYSDOH hea ng Ley Creek. Bec- environmental media	DECISION of the PSA san PCBs, VOCs, lth advisory is ause of the docu- at the site, an	and heavy metal in effect against umented hazard d the significant	ls is discharging the consumptio ous waste dispos	directly to Ley Creek n of fish from Ononda al at the site, the level	i, a nga Lake is of		
12.	c. Nearest water supply: D	Depth 1 ft. Distance > 20,000 ft. Distance 200 ft. Distance 200 ft. Distance? Prince 200 ft. Distance?	Direction Direction Yes Yes Yes		☐ Sole Sou Active? Use <u>Comm</u> i. Controlled sit j. Exposed hazs k. HRS Score	☐ Yes ☐ No ercial te access? ☐ Yes	rincipal No		

New York State Department of Environmental Conservation Division of Hazardous Waste Remediation REGISTRY SITE CLASSIFICATION DECISION						
13. Site Owner's Name see attached	14. Address see attached		15. Telephone Number			
16. Preparer		17. Approved				
Signature	Date	Signature	Date			
Name. Tit	le. Organization	Name, T	itle, Organization			

SITE OWNERS					
Name	Address				
Town of Salina	201 School Road Liverpool, NY 13088				
John Paratore	1551 Breimerton Road Syracuse, NY 13208				
Niagara Mohawk Power Corp.	Real Estate Tax Department A-3 300 Erie Boulevard Syracuse, NY 13202				
County of Onondaga Division of Drainage and Sanitation	650 Hiawatha Boulevard W. Syracuse, NY 13202				

CLA	SSIFICATION WOR	RKSHEET	
Site: Salina Town Landfill County: C	Onondaga	Region: 7	
Hazardous waste disposed?	⊠ Yes (to 2)	☐ No (Stop)	☐ Unknown (Stop)
2. Consequential amount of hazardous waste?	⊠ Yes (to 3)	□ No (Stop)	☐ Unknown (to 3)
3. Part 375-1.4(a)(1) applies?	□ No (to 4)	☐ Unknown (to 4)	
	X Yes (as checked b	pelow; Class 2; to 5)	
☐ a. endangered or threatened species	☐ d. fish, shellfish	n, crustacea, or wildlife	
	e. fire, spill, ex	xplosion, or toxic reaction	
🖾 c. bioaccumulation	☐ f. proximity to	people or water supplies	
4. Part 375-1.4(a)(2) applies?	☐ No (Class 3; Stop		ı; Stop)
☐ Yes (Class 2; to 5)			
	. *		
Factor(s) considered in making this determination:	· Results of DCA sampling	g indicate a significant threat	
because discharges from the site contravene ambient s			
and heavy metals is discharging directly to Ley Creek	, a protected stream. Haz	ardous waste disposal has been	documented at the site.
	5		
CURAMADY			
SUMMARY Construction Wester	⊠ Yes □ No □		
Consequential Hazardous Waste			
Significant Threat	Site Number _7340		
Proposed Classification 2	Site Number <u>1340</u>		
Date		Signature and Title	

NEW YORK STATE DEPARTMENTS OF ENVIRONMENTAL CONSERVATION AND HEALTH INACTIVE HAZARDOUS WASTE DISPOSAL, SITE PRIORITY RANKING WORKSHEET

SITE I.D.: 734036 SITE NAME: Salina Town Landfill

8) Has a public or private water supply which is currently in use been contaminated or threatened?			
b	Has human exposure to contaminants (or the potential for exposure) been identified which represents a significant health risk as determined by DOH?		□(1)	
c) Has bioaccumulation of site contaminants in flora or fauna resulted in a health advisory?		(If 1 or more boxes are ch check this be	ecked,
đ	Are site contaminants present at levels that are acutely toxic to fish or wildlife or that have caused documented fish or wildlife mortality?			
F	Priority II - Important Sites. Priority II will be assigned if any of the following questions can be answered	l affirma	tively.	
a	Has a Class A or AA surface water body, primary or principal aquifer been contaminated or threatened without affecting an existing water supply?			
b	Has bioaccumulation of site contaminants in flora or fauna resulted in actionable levels (but not a health advisory)?		□ (2))
c	Are contaminants at levels chronically toxic to fish/wildlife?		(If 1 or mor boxes are ch check this b	necked
d.	Have endangered, threatened or rare species, significant habitats, designated coastal zone or regulated wetlands been impacted by releases from the site?			
-3. s	Priority III - will be assigned unless one or more of the site prioritization criteria, specified above, apply tite. After remedial needs for Priority I and II sites have been accommodated, remediation of sites under tategory can be considered. If Priority III, check box 3.		⊠(3))
	Enter the number of the priority box checked 1, 2, or 3 here		3 (4))
	FACTORS			
	JC Factor - If the sites has been identified by the International Joint Commission (LJC) as a component in a remedial action plan, subtract (1) from the value in box 4 and enter the result in box 5.		□(5)
I	KDZ Factor - If the site is within a New York State designated Economic Development Zone (EDZ) hould this fact cause the site priority to be raised?		Yes	No □
t	Community Support Factor - If the site has been targeted for local government-supported development by a developer willing to sign a consent order with DEC to finance investigation and remediation should his fact cause the site priority to be raised?		Yes	No
]	f either "yes" box is checked, subtract 1 from the value in box 4 and enter the result into box 6. If no" is checked, the value in box 6 equals box 4 (or box 5 if applicable). If both LJC and EDZ/Community Support factors apply, only 1 (not 2) will be subtracted from the value in box 4. The resultant value in box 6 will never be less than 1		□ (¢	6)
]	IRM NOTE: Should this site be considered a candidate for an Interim Remedial Measure (IRM) as defined by 6 NYCRR Part 375-1.3n?		Yes	No S
1	f "yes" please explain why:			

SOURCE: USGS 7.5 Minute Series (Topographic) Quadrangle: Syracuse West, NY, 1973, Photorevised 1978.

Figure 1-1 LOCATION MAP, SALINA TOWN LANDFILL SITE

Figure 1-2 SAMPLE LOCATION MAP
SALINA TOWN LANDFILL SITE

2. SITE HISTORY

The Salina Landfill site is a former municipal sanitary landfill that accepted domestic, commercial, and industrial waste from the Town of Salina and its vicinity. During the time of active landfill disposal, the majority of the site was owned by East Plaza, Inc., and leased to the Town of Salina (Ventre 1994). The western portion (approximately 29 acres) of the site was purchased by the Town of Salina in 1981. The eastern portion of the site (approximately 15 acres) was purchased from East Plaza, Inc., by John Paratore in 1985 (Paratore 1993). Two strip ownership parcels for utilities crossing the site are owned by Onondaga County (approximately 5 acres) and Niagara Mohawk (approximately 1.5 acres) (Town of Salina 1975).

Hazardous wastes, in the form of paint sludge and waste paint thinner, were disposed of by GM at the site between 1962 and 1973 (GM 1985). PCB-containing wastes, in the form of oil-saturated sorbents that were used to clean up floors after coolant and hydraulic-oil leaks, were mixed in with the GM plant's general refuse and taken to four Onondaga County landfills, including the Salina Landfill site (Giacobbi 1986; Light 1986). The amount of PCB-contaminated wastes taken from the GM Fisher Guide Division to the Salina Landfill site is unknown, as is the total amount of PCB wastes generated by GM prior to landfill closure in 1974 (OCHD 1979). In addition, affidavits from waste haulers alleged that drummed wastes from Carrier Corporation's Thompson Road Plant in Syracuse were disposed of at the Salina Landfill from 1974 to 1979 (Hupper 1989). The amount of waste is unknown, and the contents of the drums may have included 2-butanone (methylethylketone), toluene, xylene, and solder flux, among many other substances (Hupper 1989).

There were numerous violations of New York State sanitary landfill regulations during operation and early stages of closure, including incidents of burning, leachate

outbreaks, protruding refuse, standing water, and inadequate cover (NYSDEC 1972; NYSDEC 1987; OCHD 1986). The fill material used for daily cover and landfill closure operations may have included PCB-contaminated soil, since some of the soil was obtained from the Ley Creek dredgings (Kane 1981; OCHD 1970a). Sewage sludge from the Ley Creek sewage treatment plant was used as cover on the landfill for at least a short time, ending in March 1970 (OCHD 1970b).

The landfill stopped accepting municipal refuse by early 1975 (Light 1986; Kane 1985), but problems related to contractor enlistment, owner disputes, weather conditions, and other logistics delayed the completion of final grading, capping, and cover until November 1982 (Kane 1985; Wheeler 1981).

On-site sampling has been conducted by NYSDEC, Onondaga County Health Department (OCHD), and NUS Corporation for the United States Environmental Protection Agency (EPA). Samples were collected in 1986 and 1987 and included surface soil, subsurface soil, groundwater, surface water, and sediment from Ley Creek and on-site drainage ways (NUS 1986; ATL 1987; C & S 1987; OBG 1986; O'Brien and Gere 1989). PCBs were found at concentrations up to 270 ppm in oil-saturated subsurface soils collected from well borings; however, PCBs were not detected in on-site surface soils (ATL 1987). Sediment samples collected from Ley Creek contained PCBs at concentrations up to 3.6 ppm; however, PCB contamination has been identified upstream of the Salina Landfill site as well (Grant 1987; NUS 1986). Results of surface water sampling in Ley Creek upstream and downstream of the site showed no significant difference in contamination between the two locations. Groundwater sampling was performed at a single upgradient monitoring well. Analytical results indicated the presence of trace levels of volatiles and semivolatiles (ATL 1987; NYCRR 1986). No cyanide, pesticides, or PCBs were detected. Downgradient wells could not be completed because the two borings intended for well installation encountered wastes in the form of black oil and petroleum saturated soil (ATL 1987). Samples from these borings contained PCBs as previously stated.

The sanitary sewer that exists under the center of the landfill (Ley Creek Trunk Sewer) is owned by Onondaga County and was abandoned in place the early 1990s. The sewer has been replaced by a sewer that runs along the east side of the landfill, northward to of the New York State Thruway. When the sewer was abandoned, the manholes were filled

with crushed stone and their covers removed. The sewer was blocked with bulkheads on both the eastern and western ends of the site (Pickholtz 1994).

3. PSA TASK DISCUSSION

Task 1 of the PSA was performed in 1991 and 1992 by E & E under contract to NYSDEC and included a file search and site inspection. The PSA was continued by JCL, a subcontractor to E & E, at the Salina Landfill site with fieldwork performed in July and November 1993. The scope of work for the PSA was prepared by NYSDEC and included a phased approach for this site. Based on the analytical results of the environmental media that was sampled during the initial phases of the PSA, NYSDEC concluded that additional phases of investigation (i.e., monitoring well installation and sampling) would not provide significant additional information needed to reclassify the site. The EPA Site Inspection Form 2070-13 is presented in Appendix A.

With minor exceptions, all field tasks were performed in accordance with the scope of work. Two surface water/sediment samples (SW/SED-9 and SW/SED-10) proposed in the abbreviated technical work plan could not be collected. These samples were to have been obtained from manholes on each end of the abandoned sanitary sewer. However, at the time of sampling in November 1993, it was discovered that these manholes had been filled.

3.1 PSA TASK 1 REPORT

The Task 1 file search and review was conducted utilizing state, county, municipal, and site-specific sources. This information was compiled from existing data as well as new sources, and a preliminary characterization of the site was developed after review.

A site inspection was conducted on May 1, 1991 to assess the surface characteristics of the site and vicinity, observe evidence (if any) of hazardous substances or wastes present, photograph the site, conduct preliminary air monitoring using a photoionization detector (PID) and a radiation meter and confirm information from the original data search. At the time of

the site inspection, there was no physical evidence of hazardous waste disposal, although exposed trash and leachate seeps were observed. No readings above background levels were noted on any instruments during the inspection.

The PSA Task 1 report was submitted to NYSDEC in July, 1992. This report concluded that additional data was needed to assess the threat to public health and the environment posed by the site. Additional investigations were recommended to determine if the wastes at this site are hazardous and widespread.

3.2 PRE-FIELD INVESTIGATION

Continuation of the PSA for the Salina Landfill site involved several field tasks as described in the following sections. Prior to initiating field activities, E & E performed several other tasks. In June 1993, E & E submitted the Project Management Work Plan to NYSDEC for approval. This document included the abbreviated technical work plans prepared by NYSDEC for the site as well as technical approach for the management and performance of the field tasks, laboratory analyses, and report preparation.

In June 1993, E & E submitted the General Health and Safety Plan (HASP) and Quality Assurance Project Plan (QAPjP) to NYSDEC for review. The HASP outlined the health and safety procedures and protocols to be followed during site characterization sampling and field activities. This document and information gathered during Task 1 of the PSA were used to generate a site-specific safety plan.

In August 1993, E & E submitted the final QAPjP to NYSDEC for approval. The QAPjP presents the policies, organization, objectives, functional activities, and specific quality assurance (QA) and quality control (QC) activities implemented for this project. The QAPjP was designed in accordance with NYSDEC and previously defined EPA guidance documents to ensure that all technical data generated by E & E's Analytical Services Center (ASC) meet specific data quality objectives.

In addition to preparation of these documents, tax map information was obtained and a site reconnaissance was performed. The site reconnaissance was conducted by E & E and JCL in conjunction with site sampling on July 7, 1993. No physical evidence of hazardous waste disposal was observed at this time.

3.3 SAMPLING ACTIVITIES

On July 7 and November 30, 1993, a total of 10 surface water samples, 10 sediment samples, five surface soil samples, and three leachate samples were collected (see Figure 1-2). Sample locations were chosen with the concurrence of NYSDEC field representatives and based on information provided in NYSDEC's abbreviated work plan for the site.

All sample collection, shipping, handling, and analytical procedures were performed in accordance with the QAPjP (E & E 1993a). Additionally, field and sampling procedures were performed in accordance with the work plan (E & E 1993b), QAPjP, and HASP (E & E 1993c). Sample analysis was performed by E & E's ASC in accordance with NYSDEC's 1991 Analytical Services Protocol. All samples except SW/SED-11, SW/SED-12, SS-4 and L-3 were analyzed for full TCL parameters including volatiles, semivolatiles, pesticides, PCBs, and inorganics. The remaining samples were analyzed for volatiles, PCBs, and pesticides only. One surface water matrix spike/matrix spike duplicate (MS/MSD) sample set and one sediment MS/MSD sample set were collected for QA/QC purposes.

Table 3-1 is a summary of the sampling and analyses performed during this investigation. Tables 3-2 through 3-11 present results of sampling and analysis by media. Data summary forms are presented in Appendix B. Tentatively identified compounds (TICs) detected in samples collected during this investigation are also presented in Appendix B.

3.3.1 Surface Water

Surface water samples SW-1 through SW-4 were collected from Ley Creek adjacent to the site. Sample SW-1 was collected upstream of the site and was used for comparison with samples collected downstream. However, due to Ley Creek's historic water quality problems, analytical results from SW-1 may not represent uncontaminated water quality conditions in the area.

Sample SW-8 was collected north of the northwest corner of the site in the drainage ditch that separates the site from the New York State Thruway. This ditch receives runoff from the northern portion of the site and from the thruway. Flow in this ditch converges in the north central part of the site and flows south, eventually discharging to Ley Creek.

Sample SW-5 was collected from the confluence of the thruway ditch and the generally north-south trending drainage ditches that bisects the site. From this sampling

er og prokulat attablete flat af

location, surface water flows south and eventually enters a 48-inch culvert pipe. Sample SW-6 was collected at the outfall of this pipe to Ley Creek.

Samples SW-11 and SW-12 were collected from an unnamed tributary of Ley Creek located to the west of the site. The SW-4 location is upstream of the area where this tributary enters the creek.

3.3.1.1 Surface Water from Ley Creek

Four surface water samples (SW-1 through SW-4) from Ley Creek and one (SW-6) from an outfall to the Creek were collected during this PSA (see Figure 1-2) and were analyzed for full TCL parameters. Ley Creek is a Class B stream in the area adjacent to the site; therefore, analytical results for these samples were compared to NYSDEC Class B surface water standards.

Low levels of VOCs were detected in surface water samples from Ley Creek and included vinyl chloride (VC), total 1,2-dichloroethene (1,2 DCE), 1,2-dichloroethane (1,2-DCA), and toluene (see Table 3-2). Total 1,2-DCE was detected above quantitation limits in surface water from Ley Creek in SW-2 at 15 μ g/L and in SW-6 at 31 μ g/L. Total 1,2-DCE was not detected in the upstream sample (SW-1). NYSDEC Class B standards are not available for any VOCs detected in surface water samples from Ley Creek. 1,2-DCA was detected in all samples, including the upstream sample.

One semivolatile organic compound, 1,4-dichlorobenzene (1,4-DCB) was detected above quantitation limits in sample SW-3 (see Table 3-2). The detected concentration is below the Class B standard of 5 μ g/L.

No pesticides or PCBs were detected in surface water samples from Ley Creek.

A total of 12 inorganic analytes were detected in surface water samples from Ley Creek (see Table 3-3). The Class B surface water standards for aluminum and zinc were exceeded in samples SW-1, SW-2, SW-3, and SW-4. The Class B standard for iron was exceeded in all samples from Ley Creek. Concentrations of inorganics in samples adjacent to or downgradient of the site were compared with concentrations in the upstream sample to assess the impact of the site on water quality. In sample SW-4, aluminum, copper, iron, lead, and manganese were detected at concentrations at least two times higher than in the upstream sample, SW-1 (see Table 3-3). In addition, arsenic was detected in SW-6 at a concentration greater than two times that of the upstream sample.

3.3.1.2 Surface Water from Drainageways

Surface water samples SW-5, SW-7, SW-8, SW-11, and SW-12 were collected from drainage ditches on or adjacent to the site (see Figure 1-2). Samples SW-5, SW-7, and SW-8 were analyzed for full TCL parameters. Samples SW-11 and SW-12 were analyzed for volatiles, PCBs, and pesticides only. Analytical results for these samples were compared to NYSDEC Class D surface water standards (see Tables 3-4 and 3-5). The best usage of Class D waters is fishing; Class D waters are suitable for fish survival and primary and secondary contact recreation, although other factors may limit use for these purposes. While water in these drainage ditches does not strictly meet the criteria of Class D waters, these standards are used as a conservative basis of comparison.

VOCs detected in surface water samples from drainages include acetone, carbon disulfide, total 1,2-DCE, 1,2-DCA, and 1,1,1-trichloroethane (1,1,1-TCA). The only VOC found above quantitation limits was acetone, which was detected at 160 μ g/L in sample SW-11. No Class D standards are available for any of the VOCs detected in surface water from drainage ditches. Semivolatile organics, pesticides, and PCBs were not detected in surface water samples from drainage ditches.

Eighteen inorganic analytes were detected in surface water samples collected from the drainage ditch (see Table 3-5). The Class D standards for copper and cyanide were exceeded in sample SW-7, and the standard for iron was exceeded in samples SW-5, SW-7, and SW-8.

3.3.2 Sediment

Ten sediment samples were collected at the same locations as surface water samples (see Figure 1-2). Sediment samples SED-1 through SED-4 were collected from Ley Creek. SED-6 was collected from a culvert at its outfall to Ley Creek. SED-1 was collected upstream of the site. Sediment samples SED-5, SED-7, SED-8, SED-11, and SED-12 were collected from drainage ditches on or adjacent to the site (see Figure 1-2).

VOCs detected in sediment samples from Ley Creek included toluene, total 1,2-DCE, and chlorobenzene (see Table 3-6). Toluene was detected below quantitation limits in samples SED-3 and SED-6. SED-3 also contained chlorobenzene at 32 μ g/kg. Total 1,2-DCE was detected below quantitation limits in SED-2. Acetone was detected samples SED-5, SED-8, SED-11, and SED-12, collected from drainages, at concentrations of 170 μ g/kg, 84 μ g/kg, 120 μ g/kg, and 89 μ g/kg, respectively.

Semivolatiles detected in sediment samples include polyaromatic hydrocarbons (PAHs) and two related compounds, carbazole and dibenzofuran. In addition, pentachlorophenol was detected in the upstream sample only (see Table 3-6). PAHs were detected in all sediment samples at estimated concentrations ranging from 7,300 to 30,000 μ g/kg in samples collected from Ley Creek, and from 530 to 3,000 μ g/kg in samples collected from drainage ditches. Carbazole was detected in samples from Ley Creek at estimated concentrations ranging from 79 to 420 μ g/kg. Dibenzofuran was detected in SED-2 at an estimated concentration of 200 μ g/kg.

Pesticides 4,4'-DDD and 4,4'-DDT were detected in sample SED-12 at estimated concentrations of 26 and 40 μ g/kg, respectively. PCBs were detected in all samples collected from Ley Creek and in samples SED-7, SED-11, and SED-12 from drainages (see Table 3-6). Aroclor 1242 was detected in samples SED-2 through SED-4 at concentrations ranging from 1,200 to 2,000 μ g/kg. The highest concentration of Aroclor 1242 detected, 2,200 μ g/kg, was in the upstream sample SED-1. Aroclor 1242 was detected in sample SED-7 at 370 μ g/kg; Aroclor 1248 was detected at 570 μ g/kg in SED-6, collected from Ley Creek, and at 770 μ g/kg and 7,100 μ g/kg from drainage samples SED-11 and SED-12, respectively. Aroclor-1254 was detected in sample SED-11 at an estimated concentration of 570 μ g/kg and in SED-12 at 3,100 μ g/kg.

A total of 20 inorganic analytes was detected in sediment samples from Ley Creek, and a total of 20 inorganic analytes were detected in samples from drainage ditches (see Table 3-7). Results were compared to the background concentrations detected in eastern United States soils and other surficial materials (Shacklette and Boerngen 1984). In samples from Ley Creek, calcium, copper, lead, magnesium, and zinc concentrations exceed the upper limits of the 90th percentile in all samples. Concentrations of vanadium in SED-6 and nickel in SED-3 also exceeded the 90th percentile.

Concentrations of inorganic analytes in downstream sediment samples from Ley Creek were compared with the upstream sample SED-1 to assess potential impacts of the site to the stream. Analytes detected at greater than or equal to two times the upstream concentrations include aluminum, arsenic, barium, chromium, nickel, potassium, and vanadium (see Table 3-7). Analytes detected only in downstream samples include beryllium, cadmium, selenium, and thallium.

Concentrations of calcium and lead in all sediment samples from drainage ditches exceed the upper limits of the 90th percentile. The concentrations of antimony and magnesium in SED-5, cadmium in SED-7, and arsenic in SED-8 were above the observed ranges in eastern United States soils and other surficial materials. Concentrations of arsenic and nickel in SED-5, and nickel and copper in SED-7 exceeded the upper limits of the 90th percentile.

3.3.3 Surface Soil

One background (off-site) surface soil sample, SS-1, and four on-site surface soils samples, SS-2 through SS-5, were collected as part of the PSA (see Figure 1-2). Surface soil samples were analyzed for full TCL parameters with the exception of SS-4, which was analyzed for volatiles, pesticides and PCBs only. Surface soil sample SS-1, the background sample, was collected off site on the south side of Ley Creek approximately 150 feet west of Wolf Street in a small wooded area surrounded by urban/commercial properties. Sample SS-2 was collected in the northeast portion of the site along the new Onondaga County sewer line. The soil used in the installation of this sewer line reportedly consisted of fill materials. Sample SS-3 was collected in the northwest corner of the site at the bottom of the landfill slope. Sample SS-4 was collected immediately adjacent to the location of leachate sample L-3, (see Section 3.3.4), to provide additional information in this area.

Acetone, the only VOC detected in surface soils, was found at an estimated concentration of 12 μ g/kg in sample SS-4 (see Table 3-8). Semivolatiles detected in surface soil samples include PAHs, and two related compounds, carbazole and dibenzofuran. Concentrations of these compounds were highest in the background sample.

Pesticides were detected at low levels in surface soils and include 4,4'-DDE in SS-3, and dieldrin and 4,4'-DDT in SS-5. PCBs were detected in samples SS-1, SS-2, SS-3, and SS-4. Aroclor 1248 was detected at 59 μ g/kg in SS-2, and at estimated concentrations of 30,000 μ g/kg in SS-1, 36 μ g/kg in SS-3, and at 680 μ g/kg in SS-4. Aroclor 1254 was found at an estimated concentrations of 23 μ g/kg in SS-2, 16 μ g/kg in SS-3, and 280 μ g/kg in SS-4.

A total of 23 inorganic analytes were detected in surface soil samples (see Table 3-9). Concentrations of calcium and magnesium in all on-site surface soil samples exceeded the upper limits of the 90th percentile. The concentrations of calcium in sample SS-5 and magnesium in SS-2 and SS-5 were greater than two times the concentration in the background sample.

3.3.4 Leachate

Leachate samples L-1 and L-2 were collected from leachate seeps along the northern bank Ley Creek and analyzed for full TCL parameters. Sample L-3 was collected near L-2 during the second sampling event to try to confirm earlier sampling results (see Figure 1-2). This sample was analyzed for volatiles, pesticides, and PCBs only. Leachate sample analytical results were compared to NYSDEC Class D surface water standards as a conservative basis for comparison since the leachate discharges directly into a Class B stream and is rapidly diluted.

VOCs detected in leachate samples include 1,2-DCA in L-1, and benzene and chlorobenzene in all leachate samples (see Table 3-10). No NYSDEC Class D standards are available for 1,2-DCA and benzene. Concentrations of chlorobenzene in leachate samples are below the Class D standard.

Semivolatiles detected in leachate samples L-1 and L-2 include low levels of 1,2-dichlorobenzene (1,2-DCB), and 1,4-DCB.

One PCB, Aroclor 1232, was detected in samples L-2 and L-3 at estimated concentrations of 2.6 and 2.5 μ g/L, respectively. These levels are above the Class D standard of 0.001 μ g/L.

A total of 17 inorganic analytes were detected in leachate samples (see Table 3-11). The concentrations of copper in L-1 and iron in L-1 and L-2 exceed Class D surface water standards.

3.4 SURVEYING

Following completion of the sampling activities, the site was surveyed under the direction of a licensed surveyor to a vertical accuracy of 0.05 feet and a horizontal precision of 1/10,000. The vertical datum used was taken off a level run on New York State Department of Transportation benchmarks. The horizontal datum was referenced to the New York State Plane Coordinate System, Central Zone. The physical features of the site, Ley Creek, and all PSA sampling locations were surveyed and are shown on Figure 1-2 in this report. No property lines were surveyed. Instead, Town of Salina tax maps (Town of Salina 1975) were used to approximate the property boundaries shown in Figure 3-1.

Table 3-1

SAMPLING AND ANALYSIS SUMMARY
SALINA TOWN LANDFILL SITE

		T	arget Compound Li	st	
Sample Number	Volatiles	Semivolatiles	Pesticides/PCBs	Inorganics	Cyanide
Surface W	ater				
SW-1	×	Х	x	х	x
SW-2	x	X	x	x	х
SW-3	х	х	x	x	x
SW-4	х	X	x	x	x
SW-5	х	х	x	х	x
SW-6	х	Х	x	Х	Х
SW-7	х	X	x	х	x
SW-8	x	х	x	х	х
SW-11	X	_	х	-	_
SW-12	х		х		
Sediment					
SED-1	x	x	x	х	х
SED-2	x	х	х	X	х
SED-3	x	х	x	х	х
SED-4	x	×	x	х	х
SED-5	X	Х	х	х	х
SED-6	х	Х	Х	х	х
SED-7	х	х	х	х	х
SED-8	х	Х	Х	х	х
SED-11	x		х	_	_
SED-12	х	_	x	_	
Surface S	oil		· .		
SS-1	х	Х	Х	х	X
SS-2	х	X	Х	х	Х
SS-3	х	х	x	х	x

	Table 3-1 SAMPLING AND ANALYSIS SUMMARY SALINA TOWN LANDFILL SITE							
Target Compound List								
Sample Number								
SS-4	х		X	_				
SS-5	х	Х	x	х	X			
Leachate	Leachate Daniel and Market Baseline Grade College Coll							
L-1	х	х	x	X	х			
L-2	х	X	X	х	х			
L-3	х	_	х	_				

Table 3-2

ORGANIC COMPOUNDS DETECTED IN SURFACE WATER SAMPLES FROM LEY CREEK SALINA TOWN LANDFILL SITE

(all values reported in $\mu g/L$)

Compound	SW-1	SW-2	SW-3	SW-4	SW-6	NYSDEC Class B Surface Water Standard ^a
Volatiles						
Vinyl chloride	_	9 J	_	_	_	NA
Total 1,2-Dichloroethene	_	15	5 J	5 J	31	NA
1,2-Dichloroethane	5 J	5 J	8 J	9 J	9 J	NA
Toluene	_	2 J	_	_	7 J	NA
Semivolatiles			1975 - 1975 - 1975 1987 - 1975 - 1975	7 - 1		
1,4-Dichlorobenzene	_	_	2 J	-	_	5

Note: Samples were collected on July 7, 1993.

a NYSDEC 1993.

Key:

- = Not detected.

J = Estimated concentration.

NA = Not available.

Table 3-3

INORGANIC ANALYTES DETECTED IN SURFACE WATER SAMPLES FROM LEY CREEK

SALINA TOWN LANDFILL SITE

(all values reported in µg/L except as noted)

					8 n A S 3	NYSDEC Class B
Analyte	SW-1	SW-2	SW-3	SW-4	SW-6	Water Standard ^a
Aluminum	157	150	179	607 ^b	95.3	100
Arsenic	1.6	3.1	2.9	2.7	4.5 ^b	190
Barium	83.2	87.7	86.3	82.3	105	NA
Calcium	183,000	166,000	182,000	178,000	125,000	NA
Copper	2.4	2.1	3.2	8.2 ^b	_	53 ^c
Iron	372	456	479	1,660 ^b	362	300
Lead	3.0	2.4	4.7	9.5 ^b	_	29 ^c
Magnesium	30,400	33,500	31,900	31,700	43,600	NA
Manganese	71.4	92.9	101	182 ^b	44.1	NA
Potassium	5,680	3,630	4,510	5,050	2,790	NA
Sodium	111,000	105,000	111,000	110,000	105,000	NA
Zinc	53.6	46.5	37.6	77.1	16.0	30
Total Hardness (in mg/L)	583	552	586	575	492	NA

Note: Shaded values exceed the Class B standard. Samples were collected on July 7, 1993.

Key:

- = Not detected.

NA = Not available.

a NYSDEC 1993.

b Concentration is greater than two times the concentration in the upstream sample, SW-1.

^C Standard based on hardness. Hardness value used is average of samples in which analyte is detected.

Table 3-4

ORGANIC COMPOUNDS DETECTED IN SURFACE WATER SAMPLES FROM DRAINAGEWAYS SALINA TOWN LANDFILL SITE (all values reported in µg/L)

Compound	SW-5	SW-7	SW-8	SW-11	SW-12	NYSDEC Class D Surface Water Standard ^a
Volatiles						
Acetone	_	_	_	160	_	NA
Carbon disulfide	i_	_	_	5 J	_	NA
Total 1,2-Dichloroethene	_	_	-	_	3 J	NA
1,2-Dichloroethane	7 J	_	_	_	_	NA
1,1,1-Trichloroethane		_	-	-	5 J	NA

Note: Samples SW-11 and SW-12 were not analyzed for semivolatile organic compounds. Samples were collected on July 7 and November 30, 1993.

Key:

- = Not detected.

J = Estimated concentration.

NA = Not available.

a NYSDEC 1993.

(all values reported in µg/L except as noted)	SALINA TOWN LANDFILL SITE	WATER SAMPLES FROM DRAINAGEWAYS	INORGANIC ANALYTES DETECTED IN SURFACE	Table 3-5	
d)		YS	RFACE	 :	

NA	500	780	487	Total Hardness (in mg/L)
22 ^d	1	28.0	-	Cyanide
1,767	104	275	30.9	Zinc
190	ı	25.5	1	Vanadium
NA	70,400	235,000	100,000	Sodium
NA	2,500	87,600	2,760	Potassium
—/8,787/— ^c	ı	96.4	1	Nickel
NA	71.4	738	77.2	Manganese
NA	42,800	66,000	43,100	Magnesium
—/1,113/634°	1.7	87.3	1	Lead
300	2,500	244,000	421	Iron
—/123/81°	2.8	139	K .	Copper
NA	1	55.2	1	Cobalt
6,350/9,339/6,488°	6.1	95.6	6.3	Chromium
NA	130,000	204,000	124,000	Calcium
NA	ı	13.0	1	Cadmium
NA	99.5	3,420	101	Barium
360 ^b	20.8	17.6	5.8	Arsenic
NA	205	2,580	539	Aluminum
Standard ^a	SW-8	SW-7	SW-5	Analyte
NYSDEC Class D		× A = 1	a V	

Note: Shaded values exceed the Class D standard.

Samples SW-11 and SW-12 were not analyzed for inorganics.

Samples were collected on July 7 and November 30, 1993.

- a NYSDEC 1993.
 b Standard is acid-soluble form.
- C Standard is a function of hardness as respectively shown.

 d Standard is as free cyanide (HCN + CN') expressed as CN.

Table 3-6

ORGANIC COMPOUNDS DETECTED IN SEDIMENT SAMPLES SALINA TOWN LANDFILL SITE

(all values reported in µg/kg)

			Ley Creek			Drainageways					
Compound	SED-1 ^a	SED-2 ^{b,c}	SED-3 ^c	SED-4 ^c	SED-6 ^d	SED-5	SED-7	SED-8	SED-11	SED-12d	
Volatiles	2					,					
Acetone	_	_	_	_	_	170	<u> </u>	84	120	899	
Total 1,2- Dichloroethene	_	5 J	_	_	_	_	_	_	18. 18.	5 J	
Toluene	_	- ,	3 J	, - , -,	1 J	<u> </u>	_		<u></u>		
Chlorobenzene	_	-	32	_	——————————————————————————————————————	_	_	_	<u>-</u>		
Semivolatiles	a a a a a a a a a a a a a a a a a a a										
Pentachlorophenol	110 J	-	_	_	_	_	_ :	_	NA	NA	
Carbazole	79 J	420 J	130 J	180 J	110 J	_		_	NA	NA	
Dibenzofuran	<u> </u>	200 J	_			_	_	_	NA	NA	
Total PAHs	7,300 J	30,000 J	12,000 J	18,000 J	8,600 J	530 J	3,000 J	1,700 J	NA	NA	
Pesticides							1				
4,4'-DDD	_ //			_	_		_		_	26 J	
4,4'-DDT			_	-	<u> </u>	1 - 1 , 7 ,	e	_	_	40 J	
PCBs											
Aroclor-1242	2,200 J	1,200	1,200	2,000	_	_	370		_		
Aroclor-1248	_		_	_	570		_	-	770	7,100	
Aroclor-1254	_	_	_	_	_	_	_	_	570 J	3,100	

Note: Diethylphthalate, detected 100J in SED-2, was attributed to lab/field contamination although not detected in associated blanks.

Samples SED-1, SED-2, SED-3 and SED-4 were collected from Ley Creek. Sample SED-6 was collected from the outfall of a culvert discharging to Ley Creek. Samples SED-5, SED-7, SED-8, SED-11, and SED-12 were collected from drainages on or adjacent to the site.

Samples were collected on July 7 and November 30, 1993.

- a Analyzed for pesticides/PCBs at a dilution factor of 10.
- b Analyzed for semivolatiles at a dilution factor of 2.
- ^C Analyzed for pesticides/PCBs at a dilution factor of 5.
- d Analyzed for pesticides/PCBs at a dilution factor of 2.

Key:

- = Not detected.
- J = Estimated concentration.
- NA = Not analyzed.

3-16

Table 3-7

INORGANIC ANALYTES DETECTED IN SEDIMENT SAMPLES SALINA TOWN LANDFILL (all values reported in mg/kg)

			Ley Creel	C		Dı	rainagewa	ys	Eastern U.	l Concentrations in S. Soils and Other ial Materials ^a
Analyte	SED-1	SED-2	SED-3	SED-4	SED-6	SED-5	SED-7	SED-8	Upper Limit of the 90th Percentile	Observed Range
Aluminum	2,790	4,120	6,710 ^b	6,060 ^b	6,050 ^a	10,300	6,160	1,080	128,000	>7,000 - 100,000
Antimony	_	_	_	_		91.5	_	_	1.58	<1 - 8.8
Arsenic	2.9	5.4	5.2	6.5 ^b	8.9 ^b	40.9	4.0	117	16.0	0.1 - 73
Barium	40.2	54.5	93.4 ^b	78.9	75.8	198	347	237	867	10 - 1,500
Beryllium		· -	0.42	_	_	_	-	-	1.81	<1 - 7
Cadmium	_	-	2.2	1.7	_	_	7.4	_	NA	0.01 - 7.0 ^b
Calcium	103,000	48,900	59,800	59,700	52,700	69,000	56,200	86,500	14,400	100 - 280,000
Chromium	28.3	29.0	44.3	56.6 ^b	34.0	28.1	109	_	112	1 - 1,000
Cobalt	4.5	6.2	6.5	6.0	5.9	14.6	17.9	7.9	19.8	< 0.3 - 70
Copper	70.7	56.2	76.6	82.1	54.3	47.6	146	16.9	48.7	<1 - 700
Iron	12,100	11,500	13,000	14,900	15,800	34,200	54,500	24,400	54,100	100 - >100,000
Lead	83.5	72.1	84.2	81.3	98.0	61.8	151	35.6	33.0	<10 - 300
Magnesium	12,500	12,400	15,700	15,200	15,700	20,800	2,080	5,360	10,700	50 - 50,000
Manganese	223	222	247	274	356	476	363	129	1,450	<2 - 7,000

Key at end of table.

Table 3-7

INORGANIC ANALYTES DETECTED IN SEDIMENT SAMPLES SALINA TOWN LANDFILL (all values reported in mg/kg)

Charagies		Ley Creek			Drainageways			Background Concentrations in Eastern U.S. Soils and Other Surficial Materials ^a		
Analyte	SED-1	SED-2	SED-3	SED-4	SED-6	SED-5	SED-7	SED-8	Upper Limit of the 90th Percentile	Observed Range
Nickel	16.0	19.5	40.0 ^b	27.0	21.6	40.9	51.8	11.8	38.2	<5 - 700
Potassium	429	813	1,780 ^b	1,350 ^b	1,580 ^b	3,070	1,400	-	23,500	50 - 37,000
Selenium		0.46	-	_	_	_	_		0.941	< 0.1 - 3.9
Silver	/ 7 <u>0</u> 2	_		-	_	5.2	Y 14		NA	NA
Sodium		_	_	1		_	741	806	17,400	<500 - 50,000
Thallium	_	_	0.43	_	_		_	_	13.8	2.2 - 23
Vanadium	9.7	13.7	22.2 ^b	20.6 ^b	179 ^b	33.7	22.0	5.5	140	<7 - 300
Zinc	133	176	223	246	2(52	223	304	73.3	104	<5 - 2,900
Cyanide	0.82	1.4		_	_	3.4	_	_	NA	NA

Note: Samples SED-11 and SED-12 were not analyzed for inorganics. Shaded values exceed the upper limit of the 90th percentile and/or the observed range.

Samples were collected on July 7 and November 30, 1993.

Samples SED-1 through SED-4 were collected from Ley Creek. Sample SED-6 was collected from the outfall of a culvert discharging to Ley Creek. Samples SED-5, SED-7, SED-8, SED-11, and SED-12 were collected from drainages on or adjacent to the site.

Table 3-7 (Cont.)

- a Schacklette and Boerngen 1984, except as noted.
- b Concentration is greater than or equal to two times the concentration in the upstream sample, SW-1 (for Ley Creek samples only).
- c Dragun 1988.

Key:

NA = Not available.

ND = Not detected.

	ORGA	DALINA	Table 3-8 DETECTED IN SURFA TOWN LANDFILL SIT lues reported in µg/kg)	'F	
Compound	SS-1ª	SS-2	SS-3	SS-4	50.5
Volatiles				1 00-4	SS-5
Acetone		_		1 10 .	
Semivolatiles				12 J	_
Total PAHs	51,000 J	4,800 J	7,300 ј		7
Carbazole	620 J	40 J	100 J	NA	1,300 J
Dibenzofuran	170 J			NA	
Pesticides			52 J	NA	_
4,4'-DDE	_		T		_
Dieldrin		_	4.5 J	_	_
4,4'-DDT	_		_	_	4.7 J
PCBs			_		28
Aroclor 1248	30,000 J,D,C	59	36 J	680 J	_
Aroclor 1254	<u> </u>	23 J	16 J	280 J	

Note: Samples were collected on July 7 and November 30 1993.

Key at end of table.

a Analyzed for semivolatiles at a dilution factor of 2 and pesticides/PCBs at a dilution factor of 10.
b Analyzed for semivolatiles at a dilution factor of 5.

```
Table 3-8 (Cont.)
```

Key:

- = Not detected.

C =

D = Result from dilution analysis.

J = Estimated concentration.

NA = Not analyzed.

Table 3-9

INORGANIC ANALYTES DETECTED IN SURFACE SOIL SAMPLES SALINA TOWN LANDFILL SITE

(all values reported in mg/kg)

					Background Concentrations in Eastern U.S. Soils ^a	
Analyte	SS-1	SS-2	SS-3	SS-5	Upper Limit of the 90th Percentile	Observed Range
Aluminum	3,200	4,160	1,900	3,410	128,000	>7,000 - 100,000
Arsenic	15.4	6.1	3.0	3.2	2 12 cm 12 cm 2 16.0	0.1 - 73
Barium	172	68.8	38.6	66.2	867	10 - 1,500
Beryl <mark>liu</mark> m	0.70	0.36		0.23	1.81	<1 - 7
Cadmium	6.9	_	_	-	NA	0.01 - 7.0 ^b
Calcium	47,400	81,500	67,400	211,000°	14,400	100 - 280,000
Chromium	1,920	14.2	7.0	13.9	112	1 - 1,000
Cobalt	9.8	7.1	5.3	5.0	19.8	< 0.3 - 70
Copper	485	18.7	20.4	21.2	48.7	<1 - 700
Iron	10,400	9,600	5,470	8,940	54,100	100 - >100,000
Lead	330	27.2	25.2	26.3	33.0	<10 - 300
Magnesium	9,160	21,400°	12,500	22,800 ^c	10,700	50 - 50,000
Manganese	197	319	262	254	1,450	<2 - 7,000
Mercury	0.40	_	-	_	0.265	0.01 - 3.4
Nickel	484	12.6	8.6	12.7	38.2	<5 - 700
Potassium	338	615	261	_	23,500	50 - 37,000
Selenium	0.82	_	<u></u>	0.35	0.941	<0.1 - 3.9
Silver	4.0	_	-	_	NA	NA
Sodium	627	255	98.4	_	17,400	<500 - 50,000
Thallium	0.42	0.25	_	_	13.8	2.2 - 23
Vanadium	25.7	20.4	5.9	13.3	140	<7 - 300
Zinc	481	40.5	36.2	62.9	104	<5 - 2,900
Cyanide	2.6	0.70	_	_	NA	NA

Note: S

SS-4 was not analyzed for inorganics.

Shaded values exceed the upper limit of the 90th percentile and/or the observed range.

Samples were collected on July 7 and November 30, 1993.

Key:

NA = Not available.

ND = Not detected.

a Shacklette and Boerngen 1984, except as noted.

b Dragun 1988.

^C Concentration is greater than two times the concentration in the background sample, SS-1.

(all rep	orted value	ANDFILL s in μg/L)	48.70
L-1	L-2	L-3	NYSDEC Class D Surface Water Standard ^a
	À.		minarde
7 J	- 4		NA
3 J	4 J	4 ј	NA
27	20	20	50
3 J	1000	Not analyzed	50 ^b
2 J	2 Ј	Not analyzed	50 ^t
	7 J 3 J 27	7 J — 3 J 4 J 27 20	T-1 L-2 L-3 7 J — — 3 J 4 J 27 20 20 3 J — Not analyzed 2 J 2 J Not

Note: Shaded values exceed the standard.

Samples were collected on July 7 and November 30, 1993.

Key:

— = Not detected.

J = Estimated concentration.

NA = Not available.

a NYSDEC 1993.

b Standard for dichlorobenzenes.

INORGANIC ANALYTES DETECTED IN LEACHATE SAMPLES
SALINA TOWN LANDFILL (all values reported in µg/L unless otherwise noted) **Table 3-11**

NA	800	814	Total hardness (in mg/L)
1,818°	201	284	Zinc
190	16.5	25.4	Vanadium
NA	56,900	53,700	Sodium
NA	38,300	33,000	Potassium
9,017°	53.4	116	Nickel
NA	1	0.32	Mercury
NA	485	671	Manganese
NA	56,500	57,000	Magnesium
1,162°	63.9	71.0	Lead
300	72,700	153,000	Iron
127°	116	168	Copper
NA	19.3	37.7	Cobalt
9,603°	124	203	Chromium
NA	227,000	232,000	Calcium
NA	697	982	Barium
360 ^b	3.1	1.5	Arsenic
NA	4,030	5,830	Aluminum
NYSDEC Class D Surface Water Standard ^a	L-2	L-1	Analyte

Note: Sample L-3 was not analyzed for inorganics. Shaded values exceed the Class D standards. Samples were collected on July 30 and November 30, 1993.

Key:

NA | Not detected. Not analyzed.

a NYSDEC 1993.
 b Dissolved form.
 c Standard is based on hardness. Average hardness value of 807 ppm was used.

Figure 3-1 SITE PROPERTY BOUNDARY MAP SALINA TOWN LANDFILL SITE

4. CONCLUSIONS AND RECOMMENDATIONS

4.1 CONCLUSIONS

Hazardous waste disposal has been documented at the Salina Landfill site in the form of paint sludge, waste paint thinner, and oil-saturated sorbents containing PCBs. In addition, an unknown quantity of potentially hazardous drummed wastes from Carrier Corporation were allegedly disposed of at the site. Hazardous wastes associated with documented disposal have been detected at the site in the form of PCBs at levels greater than 50 ppm (ATL 1987). In addition, hazardous constituents potentially associated with documented disposal have been detected in environmental media at the site.

During the PSA investigation, low levels of chlorinated compounds were detected in surface water and sediment samples from Ley Creek, which is adjacent to the site. PCBs were detected in Ley Creek sediment samples adjacent to the site. The highest concentration of PCBs (Aroclor 1242) was detected in the upstream sediment sample SED-1. Aroclor 1248 was not detected in SED-1, but was found in a sample adjacent to the site. This PCB was also detected in sediment samples from drainage ditches receiving runoff from the site and in a surface soil sample (SS-4) from the site. Also, Aroclor 1254 was detected in sediment sample SED-11 and in surface soil sample SS-4. Leachate discharging directly to Ley Creek from the site contained Aroclor 1232, as well as VOCs and semivolatile organic compounds. Therefore, migration of hazardous constituents from the site to Ley Creek is indicated.

4.2 RECOMMENDATIONS

Because of the documented hazardous waste disposal at the Salina Landfill site, the detection of hazardous constituents associated with documented disposal in environmental

media, and the migration of hazardous constituents to Ley Creek, it is recommended that the Salina Landfill site be reclassified to a Class 2 site.

As part of future investigations at the site, it is further recommended that proper closure of the landfill be completed addressing the following issues:

- Maintenance of a proper cap to eliminate possible direct contact with contaminated materials, leachate, and physical hazards. A properly maintained cap and drainage conditions would also reduce infiltration into the fill material and thereby reduce leachate outbreaks discharging to Ley Creek;
- Installation of fencing and adequate signs to limit public access;
- Installation of leachate collection system to prevent runoff from entering Ley Creek;
- Establishment of a groundwater and surface water monitoring program to determine the nature and extent of contaminants on site and the migration of contaminants off site; and
- Assessment of active and abandoned buried utility lines traversing the site as potential migration pathways.

5. REFERENCES

- Atlantic Testing Laboratories (ATL), 1987, Groundwater analytical data summary for well SW-1, Salina Town Landfill, May through June 1987.
- Atlantic Testing Laboratories, Ltd. and Enseco-Cal Lab, May through June 1987, Well Boring logs, well diagram, borehole sampling data summary sheets, and analytical results for Salina Town Landfill.
- Bureau of Toxic Substance Assessment (BTSA) Hazardous Waste Site Inspection Report, 1987, Town of Salina Landfill.
- Calocerinos & Spina (C & S) Consulting Engineers, P.C., 1972, Sanitary Landfill Study, Town of Salina, Onondaga County, New York (incomplete copy of document included).
- Calocerinos & Spina (C & S) Environmental Laboratory, May 1987, Laboratory Analysis Report (analytical results), Salina Town Landfill.
- Ecology and Environment, P.C., 1992, Engineering Investigations at Inactive Hazardous Waste Sites in the State of New York, Preliminary Site Assessment (PSA), Task 1 Report, Salina Town Landfill Site, No. 734036, Division of Hazardous Waste Remediation.
- August 1993a, Quality Assurance Project Plan (QAPjP), Preliminary Site Assessment, prepared for New York State Department of Environmental Conservation, Albany, New York.
- _____, June 1993b, Project Management Work Plan, Preliminary Site Assessments, prepared for New York State Department of Environmental Conservation, Albany, New York.
- _____, June 1993c, General Health and Safety Plan, New York State, Preliminary Site Assessment, prepared for New York State Department of Environmental Conservation, Albany, New York.

General Motors Corporation Fisher Guide Division, July 1985, Industrial Chemical Survey and Hazardous Waste Generator Questionnaire. , 1992, July 17, 1992, letter regarding buffing sludge and flyash process generation and composition. Grant, A., 1987, New York State Department of Environmental Conservation, memorandum to Delores Tuohy. Giacobbi, F.J., April 3, 1986, General Motors Fisher Guide Division, written communication to Larry Gross, New York State Department of Environmental Conservation, Region 7. Hupper, John R., 1989, letter to David Markell, NYSDEC, including affidavits concerning drum disposal at Salina Landfill, May 30, 1989. Kane L., 1981, Managing Engineer, Calocerinos & Spina Consulting Engineers, P.C., May 5, 1981, written communication to Norm Boyce, NYSDEC. _, 1985, written communication to Darrell W. Weston, Town of Salina Supervisor, November 15, 1985. , 1994, personal communication, Joseph C. Lu Engineers, P.C., March, 1994 Light, J., 1986, PCB Waste Dumped Here, Syracuse Herald Journal March 7, 1986. New York Code of Rules and Regulations (NYCRR), 1983, Chapter X, Division of Water Resources, Part 895, Onondaga Lake Drainage Basin, January 1983, re: water quality classifications. New York Code of Rules and Regulations, as of 1986, Part 703.5, groundwater quality standards. New York Environmental Conservation Law, Article 27, Title 13, Inactive Hazardous Waste Disposal Sites New York State Department of Environmental Conservation, October 27, 1972, Refuse Disposal and Inspection Report, Town of Salina Landfill , 1986, NYSDEC flyer obtained from public distribution rack in April 1991, New Fishing Policy for Onondaga Lake as of May 15, 1986. , Region 7, New York State-Regulated Wetlands Map. , Flood-Prone Areas Map for site vicinity, Region 7. , 1987, Division of Solid and Hazardous Waste Facility, August 20, 1987, Inspection Report.

- , 1992, Inactive Hazardous Waste Disposal Sites in New York State, Volume 7, 1993, New York State 1993-94 Fishing Regulations Guide, Albany, New York.
- New York State Department of Health, March 18, 1986, Interoffice memorandum from Ron Heerkens, Syracuse Department of Health regional office, to Dr. Mohawk, subject: General Motors Fisher Guide Division.
- NUS Corporation for the United States Environmental Protection Agency, 1986, Final Draft Site Inspection Report and Hazard Ranking System Model Old Salina Landfill (includes sample analytical data unreproducable quality on the original)
- OBG Laboratories, Inc., March 1986, Onondaga County Health Department Soil and Water samples, lab analytical results, Salina Town Landfill
- O'Brien and Gere, 1989, "Ley Creek Dredging Material Area Report/Field Investigation," report for General Motors Corporation.
- Onondaga County Health Department (OCHD), 1970a, journal kept on subject of Salina Town Landfill, entry re: use of Ley Creek dredging material as fill for landfill, May 27, 1970,
- , 1970b, Onondaga County Health Department, Summary of meeting with Town of Salina Officials on Salina Refuse Disposal Area.
- , 1979, Compilation of Landfill Practices in Onondaga County
- _____, 1986, Journal entry re: Salina Town Landfill, March 19, 1986.
- Paratore, John, 1993, Paratore Signs, Inc., personal communication with Ecology and Environment Engineering, P.C.
- Pickholtz, A., NYSDEC, 1994, personal communication with Jack Daly (Onondaga County Department of Drainage and Sanitation).
- Shacklette, H.T. and J.G. Boerngen, 1984, Elemental Concentrations in Soils and Other Surficial Materials of the Conterminous United States, U.S. Geological Survey Professional Paper 1270, Alexandria, Virginia.
- Town of Salina, 1975, Tax Map, Section Map 73
- United States Geological Survey (USGS), 1978, Syracuse West, New York Quadrangle, 7.5 Minute Series (Topographic), Department of the Interior.
- Ventre, R., 1994, Town of Salina Attorney, personal communication with Joseph C. Lu Engineers, P.C.

Wheeler, James P., 1981, Vice-President Bargabos Construction Company, Inc., written communication to Town of Salina Town Board, September 23, 1981, re: Salina Landfill, Dirt fill, and Grading contract.

Attachment 1								
HORIZONTAL SURVEY COORDINATES SALINA TOWN LANDFILL								
Survey Locations Northing Easting (feet) (feet)								
Samples								
L-1	1125672.1012	934973.7589						
L-2	1125454.8977	934398.0803						
L-3	1125453.9283	934424.9812						
SS-1	1125753.7528	935793.4774						
SS-2	1126512.8179	935806.4637						
SS-3	1126572.5242	934010.7250						
SS-4	1125454.6800	934374.1052						
SS-5	1125779.9543	933709.8551						
SW/SED-1	1126083.9252	936153.8555						
SW/SED-2	1126058.9894	935551.8332						
SW/SED-3	1125556.1004	934890.2934						
SW/SED-4	1125378.3843	933828.2348						
SW/SED-5	1126717.2954	935319.5797						
SW/SED-6	1126090.8522	935617.2297						
SW/SED-7	1125840.2983	933942.5817						
SW/SED-8	1126724.7956	933993.2876						
SW/SED-11	1125779.3868	933735.2779						
SW/SED-12	1125405.3628	933792.6487						
Control Points								
B_7	1125354.3400	935818.9200						
								

Note: Horizontal survey coordinates based on New York State Plane Coordinate System, Central Zone, Transverse Mercator Projection, reference points B 7 and B 7N.

B_7N

Reference survey locations to Figure 1-2 of PSA report.

1125883.3600

936069.3000

Figure 1-2 SAMPLE LOCATION MAP
SALINA TOWN LANDFILL SITE

ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES IN THE STATE OF NEW YORK

PRELIMINARY SITE ASSESSMENT Volume 2

Salina Town Landfill Site
Site Number 734036
Town of Salina, Onondaga County

May 1994

Prepared for:

New York State Department of Environmental Conservation

50 Wolf Road, Albany, New York 12233 Langdon Marsh, Acting Commissioner

Division of Hazardous Waste Remediation Michael J. O'Toole, Jr., P.E., Director

Prepared by:

Ecology and Environment Engineering, P.C.

ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES IN THE STATE OF NEW YORK

PRELIMINARY SITE ASSESSMENT VOLUME II

Salina Town Landfill Site Site Number 734036 Town of Salina, Onondaga County

May 1994

Prepared for:

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 Wolf Road, Albany, New York 12233 Langdon Marsh, Acting Commissioner

Division of Hazardous Waste Remediation Michael J. O'Toole, Jr., P.E., Director

APPENDIX A

EPA 2070-13 SITE INSPECTION FORM

POTENTIAL HAZA	RDOUS WASTE SI TION REPORT	TE	I. IDENTIFICATION				
_			01 State	02 Site Number			
PART 1 - SITE LOCATION AI	ND INSPECTION INFORMA	TION	NY	734036			
II. SITE NAME AND LOCATION	- All I						
01 Site Name (legal, common, or descriptive na Salina Town Landfill	me of site)	02 Street, Route No., or specific location identifier Route 11 and Wolf Street					
03 City		04 State	05 Zip Code	06 County	07 County	08 Cong. Dist.	
Town of Salina		NY ·	13088	Onondaga	Code 67	NY 33	
09 Coordinates Latitude 043° 05' 22" . N	Longitude 076° <u>08' 53</u> " . <u>W</u>		ip (check one) [] B. Federalal [] F. Other	[] C. Stat	e [] D. Co _ [] G. Ui		
III. INSPECTION INFORMATION							
01 Date of Inspection	02 Site Status	03 Years of Operation	on .				
07 / 07 / 93 Month Day Year	[] Active [X] Inactive	-1960 1974 [] Unknown Beginning Year Ending Year					
04 Agency Performing Inspection (check all that apply)							
[] A. EPA [] B. EPA Contractor _	[] C. Municipa		ipal Contractor	(name of f	im)		
[] E. State [X] F. State Contractor	Ecology and Environment Engi (name of firm)	neering, P.C.	[] G. Other	(specify)			
05 Chief Inspector	06 Title	07 Organization		08 Telephone No.			
Jim Richert	Geologist	Ecology and Environment Engineering (716) P.C.			060		
09 Other Inspectors	10 Title	11 Organization		12 Telephone No.			
Rick Watt	Geologist	Ecology and Env P.C.	ironment Engineering,	(716) 684-8060			
Frank Mento	Town Engineer	Clough-Harbour					
Valerie Woodward Alyse Pickholtz	Senior Engineering Geologist	NYSDEC		(518) 457-9538			
Marcia Liao Greg Sinton	Environmental Analyst			(716) 377-1450			
13 Site Representatives Interviewed Carol Boehlert	14 Title Salina Town Supervisor	15 Address 201 School Road	, Salina, New York	16 Telephone N (315) 457-6			
Leo F. Kane II	Town Engineer	Calocerinos & S	pina Engineers, P.C.	(315) 457-6	711		
17 Access Gained by (check one) [X] Permission	18 Time of Inspection	19 Weather Conditi	ons				
[] Warrant	1100	1					
IV. INFORMATION AVAILABLE FROM	02 Of (Agency/Organizatio	n)		03 Telephone	No.	·	
01 Contact				(716) 377-1			
Dennis Peck	Joseph C. Lu, P.E., P.C	[07 Telephone No	08 Date			
04 Person Responsible for Site Inspection Form	05 Agency	06 Organization	07 Telephone No.	ļ	R / 04		
Dennis Peck		Joseph C. Lu, P.E., P.C.	(716) 377-1450	03 / 08 Month Da			

POTENTIAL HAZARDOUS WASTE SITE

I. IDENTIFICATION	1	
01 State	02 Site Number	
1,197	224026	

SITE INSPECTION REPORT		KT .	01 State	02 Site Number	
PART	2 - WASTE INFORMATION	e en en	NY	734036	
II. WASTE STATES, QUAN	TITIES, AND CHARACTERIS	псѕ			
01 Physical States (check all that apply) [X] A. Solid [] E. Slurry [] B. Powder, Fines [X] F. Liquid [X] C. Sludge [] G. Gas [] D. Other		02 Waste Quantity at Site (measure of waste quantities must be independent) Tons 36,962 documented hazardous waste Cubic Yards No. of Drums		[] B. Corrosive [X] [] C. Radioactive [[X] D. Persistent [[X] E. Soluble [all that apply)] H. Ignitable] I. Highly volatile] J. Explosive] K. Reactive] L. Incompatible] M. Not applicable
III. WASTE TYPE					
Category	Substance Name	01 Gross Amount	02 Unit of Measure	03 Comments	·
SLU	Sludge	662	tons	paint sludge, paint thinner and reducer	
OLW	Oily waste			PCB-contaminated hydraulic oil	
SOL	Solvents	14.25			
PSD	Pesticides				
00C	Other organic chemicals	** .			·
IOC	Inorganic chemicals				
ACD	Acids				
BAS	Bases				
MES	Heavy metals	<u> </u>			
IV. HAZARDOUS SUBSTA	NCES (see Appendix for most f	requently cited CAS Nur	nbers)	<u></u>	<u></u>
01 Category	02 Substance Name	03 CAS Number	04 Storage/Disposal Method	05 Concentration	06 Measure of Concentration
OLW	PCB		landfilled, mixed with refuse	up to 270 in soil	ppm
MES	Lead		Unknown	251	mg/kg
MES	Cadmium	7440-43-9	Unknown	11.3	mg/kg
ooc	Chrysene	218-01-9	Unknown	5.300	μg/kg
ooc	Fluorene	86-73-7	Unknown	1,000	μg/kg
ooc	Phenanthrene	35-01-3	Unknown	5,700	μg/kg
V. FEEDSTOCKS (see App	endix for CAS Numbers)				
Category	01 Feedstock Name	02 CAS Number	Category	01 Feedstock Name	02 CAS Number
FDS	None		FDS		·
FDS			FDS		
FDS			FDS		
FDS			FDS		
	MATION (cite specific reference	es, e.g., state files, sampl	e analysis, reports)		
NUS Corporation, 1986	, Final Draft Inspection Report : Juide Division, 1985, Hazardou	and Hazard Ranking Syste	em Model Salina Town Lar	ndfill.	

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT	i. identificatio	I. IDENTIFICATION				
PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENT	O1 State NY	02 Site Number 734036				
II. HAZARDOUS CONDITIONS AND INCIDENTS						
	e Description:	· [X] Potential	[] Alleged			
Iron and manganese levels in a groundwater sample exceeded New York State gro of leachate could potentially contaminate the shallow sand and gravel tilly aquifer.		were from a well upgradient of the landfil	il. Vertical migration			
	erved (date) e Description:	[X] Potential	[] Alleged			
Leachate was observed migrating from landfill into Ley Creek. Upstream and doungstream.	wnstream sampling in 1986 for	und no greater contamination downstream,	compared to			
	erved (date) e Description:	[] Potential	[] Alleged			
During site inspections in 1986, 1991, and 1993, no readings above background le	evels were detected on OVA, I	HNu, or minirad. No potential is known t	o exist.			
	erved (date) e Description:	[] Potential	[] Alleged			
Site is capped; the local fire marshall has not declared site a fire hazard.						
• •	erved (date <u>May 2, 1991</u>) e Description:	[X] Potential	[] Alleged			
No fence around site, although Ley Creek and Thruway act as barriers. The entre Street has no barrier to restrict access.	ance gate was found open upor	n arrival during site inspection in 1919. 3	00 feet along Wolf			
	served (date1986, 1987) e Description:	[] Potential	[] Alleged			
PCBs were found in surface and subsurface soil at levels of 270, 74, 11, 4.9, 3.6	, and 1.4 ppm. Also, elevated	d levels of PAHs and heavy metals were d	etected.			
	erved (date) e Description:	[] Potential	[] Alleged			
No groundwater drinking wells are used within 4 miles; surface drinking water su Ontario.	pplies are located more than 3	miles away - Skaneatelas Lake, Otiaka L	ake, and Lake			
01 [] H. Worker Exposure/Injury 02 [] Obs 03 Workers Potentially Affected 0 04 Narrativ	erved (date) e Description:	[] Potential	[] Alleged			
Site is closed and capped, no workers on site.			•			
	erved (date) re Description:	[X] Potential	[] Alleged			
Ley Creek and Onondaga Lake are used for recreation.						

I. IDENTIFICATION POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT 01 State 02 Site Number PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS NY 734036 II. HAZARDOUS CONDITIONS AND INCIDENTS (Cont.) 02 [] Observed (date _____) [X] Potential [] Alleged 01 [] J. Damage to Flora 04 Narrative Description: Leachate migration could potentially affect flora in the area. 02 [] Observed (date _____ [X] Potential [] Alleged 01 [] K. Damage to Fauna 04 Narrative Description: Fauna having contact with leachate, as well as fish and other animals utilizing Ley Creek could potentially be affected. 02 [X] Observed (date July 1989 [X] Potential 01 [X] L. Contamination of Food Chain [X] Alleged 04 Narrative Description: Fish bioaccumulation of PCBs, cadmium, and mercury could occur. PCB contamination of fish in Ley Creek and Onondaga Lake is documented, but the source of PCBs is unknown. 02 [X] Observed (date 7/1/86 and 5/2/91) 01 [X] M. Unstable Containment of Wastes (spills/ [X] Potential [] Alleged runoff/standing liquids, leaking drums) 03 Population Potentially Affected: 97,442 04 Narrative Description: Leachate was observed migrating to Ley Creek. Standing water observed on hill top and many wetland areas. 01 [X] N. Damage to Off-site Property 02 [X] Observed (date 7/1/86 and 5/2/91) [X] Potential. [] Alleged 04 Narrative Description: Leachate migrating to Ley Creek could damage creek and downstream property. 01 [] O. Contamination of Sewers, Storm Drains, WWTPs 02 [] Observed (date _____) [X] Potential [] Alleged 04 Narrative Description: 01 [] P. Illegal/Unauthorized Dumping 02 [] Observed (date _____ [] Potential [] Alleged 04 Narrative Description: No evidence or recorded incident of past illegal/unauthorized dumping was found. Illegal dumping could occur, since access to site is easy via Wolf Street. No significant illegal dumping was found at time of E & E inspection in 1991. 05 Description of Any Other Known, Potential, or Alleged Hazards III. TOTAL POPULATION POTENTIALLY AFFECTED 97,442 IV. COMMENTS The Town of Salina received several violation notices during the operation of the landfill, for poor operation and non-compliance with NYSDEC regulations. V. SOURCES OF INFORMATION (cite specific references, e.g., state files, sample analysis, reports) OCHD, NYSDEC, and EPA Analytical Data, 1986 and 1987. Ecology and Environment Engineering, P.C., Site Inspection, May 2, 1991. NUS Corporation, 1986, Final Draft Site Inspection Report and Hazard Ranking System Model. General Motors Corporation, 1989, Ley Creek Dredged Material Area Report and Field Investigation.

POTENTIAL HAZARDOUS WASTE SITE	I. IDENTIFICATION							
SITE INSPECTION REPORT	01 State	02 Site Number						
PART 4 - PERMIT AND DESCRIPTIVE INFORMATION	NY	734036						
II. PERMIT INFORMATION								
01 Type of Permit Issued (check all that apply)	02 Permit Number	03 Date Issued	04 Expiration	05 Comments				
[] A. NPDES			Date					
[] B. UIC								
[] C. AIR		,						
[] D. RCRA								
[] E. RCRA Interim Status		5 .						
[] F. SPCC Plan								
[] G. State (specify)								
[] H. Local (specify)								
[] I. Other (specify)	9 - 1 - D							
[X] J. None								
III. SITE DESCRIPTION								
01 Storage Disposal (check all that apply) [] A. Surface Impoundment [] B. Piles [] C. Drum, Aboveground [] D. Tank, Aboveground [] E. Tank, Belowground [X] F. Landfill [] G. Landfarm [] H. Open Dump [] I. Other	O4 Treatment (check [] A. Incineratic [] B. Undergrot [] C. Chemical/ [] D. Biological [] E. Waste Oil [] F. Solvent Re [] G. Other Rec [X] H. Other	on Ind Injection Physical Processing Secovery Sycling Recovery	[] Buildings On Site 06 Area of Site very					
O7 Comments Site was a municipal sanitary landfill operated by the Town of Salina. It rece The site received PCB-laden wastes. Site was closed in 1974, and final gradi- outbreaks have been observed in the past and during the E & E site inspection.	ng and capping was com	iolations for non-cor pleted in 1982. One	npliance with state a upgradient monito	regulations during its active life. ring well exists on site. Leachate				
IV. CONTAINMENT								
01 Containment of Wastes (check one) [] A. Adequate, Secure [X] B. Moderate [] C. Inadequat	te, Poor [] D	Insecure, Unsound	i, Dangerous					
02 Description of Drums, Diking, Liners, Barriers, etc. Site has occasional ponding of surface water; no drainage barriers were obser	ved between landfill and	creek; grassy cover	/cap looks adequate	in most places.				
V. ACCESSIBILITY								
01 Waste Easily Accessible [] Yes [] No 02 Comments Landfill is capped, with adequate grassy cover. Leachate has been observed York State Thruway and Ley Creek act as barriers to public access.	by creek and in on-site of	litch. No fence surr	ounding site entran	ce on Wolf Street, although New				
VI. SOURCES OF INFORMATION (cite specific references, e.g., state files, s	ample analysis, reports)							
NUS Corporation, 1986, Final Draft Site Inspection Report and Hazard Rank NYSDEC file search, Onondaga County Health Department, Town of Salina Ecology and Environment Engineering, P.C., site inspection, 1991.								

I. IDENTIFICATION POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT 01 State 02 Site Number PART 5 - WATER, DEMOGRAPHIC, AND ENVIRONMENTAL DATA NY 734036 II. DRINKING WATER SUPPLY 03 Distance to Site 02 Status 01 Type of Drinking Supply (check as applicable) Well Endangered Affected Monitored >4 Surface (mi) Community A. [X] B. [] A. [] B. [] C. [] D. [] C. [] D. [X] E. [] F. [] Non-community III. GROUNDWATER 01 Groundwater Use in Vicinity (check one) [] C. Commercial, Industrial, Irrigation [] B. Drinking (other sources available) [X] D. Not Used, Unusable [] A. Only Source for Drinking (limited other sources available) Commercial, Industrial, Irrigation (no other water sources available) 02 Population Served by Groundwater 03 Distance to Nearest Drinking Water Well (mi) 05 Direction of Groundwater Flow 06 Depth to Aquifer of Concern 07 Potential Yield of Aquifer 08 Sole Source Aquifer 04 Depth to Groundwater [X] [] Yes Unknown (gpd) South-southwest 1 to 4 No [] Unknown 09 Description of Wells (including usage, depth, and location relative to population and buildings) No groundwater wells are used for drinking water within 4 miles. Aquifer is the Tully aquifer, composed of sand and gravel. Groundwater was found at a depth of 4 feet during on-site well drilling. 11 Discharge Area 10 Recharge Area [X] Yes | Comments: Landfill is in recharge area for Tully [] Yes Comments: [X] No | [] No | IV. SURFACE WATER 01 Surface Water (check one) [] C. Commercial, Industrial [] D. Not Currently Used [] B. Irrigation, Economically [X] A. Reservoir, Recreation, Important Resources **Drinking Water Source** 02 Affected/Potentially Affected Bodies of Water Affected Distance to Site Name: [] adjacent, south (mi) Ley Creek [] (mi) Onondaga Lake V. DEMOGRAPHIC AND PROPERTY INFORMATION Three (3) Miles of Site 02 Distance to Nearest One (1) Mile of Site Two (2) Miles of Site 01 Total Population Within Population 97,442 A. 13,167 51,346 No. of Persons No. of Persons (mi) No. of Persons 04 Distance to Nearest Off-Site Building 03 Number of Buildings Within Two (2) Miles of Site 0.28 05 Population Within Vicinity of Site (provide narrative description of nature of population within vicinity of site, e.g., rural, village, densely populated urban area)

Population within a 3-mile radius resides in urban residential neighborhoods intermingled with some commercially zoned areas.

POTENTIAL HAZARDO SITE INSPECTIO	and the second s	I. IDENTIFICATION	
		01 State	02 Site Number
PART 5 - WATER, DEMOGRAPHIC, A	ND ENVIRONMENTAL DATA	NY .	734036
VI. ENVIRONMENTAL INFORMATION			
01 Permeability of Unsaturated Zone (check	one)		
[] A. Impermeable (less than 10 ⁻⁶ cm/sec)	[] B. Relatively Impermeable (10 ⁻⁴ - 10 ⁻⁴ cm/sec)	[X] C. Relatively Permeable [] D. Very Permeable (10 ² - 10 ⁴ cm/sec) (greater	ermeable than 10° cm/sec)
02 Permeability of Bedrock (check one)			
[] A. Impermeable (less than 10 ⁻⁶ cm/sec)	[X] B. Relatively Impermeable (10 ⁻⁴ - 10 ⁻⁶ cm/sec)		ermeable than 10 ² cm/sec)
03 Depth to Bedrock	04 Depth of Contaminated Soil Z	one	05 Soil pH
>10 (ft)	Wastes encountered as deep a	s 10 feet; possibly deeper (ft)	
06 Net Precipitation	07 One Year 24-Hour Rainfall	08 Slope Site Slope Direction of Site Slope	Terrain Average Slope
(in)	(in)	_3.3 % <u>S-SW</u>	(fairly flat) %
09 Flood Potential	10 [] Site is on Barrier Island,	Coastal High Hazard Area, Riverine Floodway	
Site is in 50 Year Floodplain			
11 Distance to Wetlands (5 acre minimum)		12 Distance to Critical Habitat (of endangered species)
ESTUARINE OTHER		Rare plant may occur in vicinity.	
A. >2 (mi) B. adjacent (mi)		Endangered Species: Cornel-leaved Aster (Aster	infirmus)
13 Land Use in Vicinity			
Distance to:	RESIDENTIAL AREAS, NATION	AGRICULTURAL	L LANDS
COMMERCIAL/INDUSTRIAL	PARKS, FORESTS, OR WILDLIFE		AG LAND
A. <u><0.5</u> (mi)	B. Residential < 0.25	(mi) C. <u>>3</u> (mi)	D (mi)
14 Description of Site in Relation to Surrou	nding Topography		
The landfill encompasses approximately :		a adjacent to Ley Creek. Site has rolling hills and some a	steeper grades also, near the creek bank.
wastom alsolishing and a second second	,		e de la companya de l
· · · · · · · · · · · · · · · · · · ·			
			
VII. SOURCES OF INFORMATION (cite	specific references, e.g., state files,	sample analysis, reports)	
Atlantic Testing Company, 1987, well do New York Heritage Program, Significan NUS Corporation, 1986, Final Draft Ins	ce Habitat Unit, 1991, corresponden	ce System Model	
	· · · · · · · · · · · · · · · · · · ·		

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 6 - SAMPLE AND FIELD INFORMATION I. SAMPLES TAKEN Sample Type O1 Number of Samples Takes Groundwater Surface Water 10 Ecology and Environment ASC April 1994 Air Runoff Spill Soil and Sediment 15 Ecology and Environment ASC April 1994 Wegetation Leachate 3 Ecology and Environment ASC April 1994 III. FIELD MEASUREMENTS TAKEN 01 Type O2 Comments Photoionization detector (RINa) No readings above background levels were detected on either instrument on May 2, 1991 or July 7, 1993. IV. PHOTOGRAPHS AND MAPS 01 Type [X] Ground [] Aerial O2 Ia Custody of Ecology and Environment Engineering, P.C., Lancaster, New York Coame of organization or individual)	——————————————————————————————————————
PART 6 - SAMPLE AND FIELD INFORMATION NY 734036 II. SAMPLES TAKEN Sample Type 01 Number of Samples Taken 02 Samples Sent To 03 Estimated Date Results Availa Groundwater Surface Water 10 Ecology and Environment ASC April 1994 Waste Air Runoff Spill Soil and Sediment 15 Ecology and Environment ASC April 1994 Vegetation Leachate 3 Ecology and Environment ASC April 1994 III. FIELD MEASUREMENTS TAKEN 01 Type 02 Comments Photoionization detector (HNu) Minired IV. PHOTOGRAPHS AND MAPS 01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
II. SAMPLES TAKEN Sample Type	
Sample Type 01 Number of Samples Taken 02 Samples Sent To 03 Estimated Date Results Availa Groundwater 10 Ecology and Environment ASC April 1994 Waste 1 Spill Soil and Sediment 15 Ecology and Environment ASC April 1994 Vegetation 15 Ecology and Environment ASC April 1994 Use taken 15 Ecology and Environment ASC April 1994 Use taken 15 Ecology and Environment ASC April 1994 Use taken 15 Ecology and Environment ASC April 1994 III. FIELD MEASUREMENTS TAKEN 01 Type 02 Comments Photoionization detector (HNu) No readings above background levels were detected on either instrument on May 2, 1991 or July 7, 1993. IIV. PHOTOGRAPHS AND MAPS 01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
Groundwater Surface Water 10 Ecology and Eavironment ASC April 1994 Waste Air Runoff Spill Soil and Sediment 15 Ecology and Environment ASC April 1994 Vegetation Leachate 3 Ecology and Environment ASC April 1994 III. FIELD MEASUREMENTS TAKEN 01 Type 02 Comments Photoionization detector (HNu) No readings above background levels were detected on either instrument on May 2, 1991 or July 7, 1993. IV. PHOTOGRAPHS AND MAPS 01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
Groundwater Surface Water 10 Ecology and Environment ASC April 1994 Waste Air Runoff Spill Soil and Sediment 15 Ecology and Environment ASC April 1994 Vegetation Leachate 3 Ecology and Environment ASC April 1994 III. FIELD MEASUREMENTS TAKEN 01 Type 02 Comments Photoionization detector (HNu) Minimad IV. PHOTOGRAPHS AND MAPS 11 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	ble
Waste Air Runoff Spill Soil and Sediment 15 Ecology and Environment ASC April 1994 Vegetation Leachate 3 Ecology and Environment ASC April 1994 III. FIELD MEASUREMENTS TAKEN 01 Type 02 Comments Photoionization detector (HNu) No readings above background levels were detected on either instrument on May 2, 1991 or July 7, 1993. Minirad IV. PHOTOGRAPHS AND MAPS 01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
Waste Air Runoff Spill Soil and Sediment 15 Ecology and Environment ASC April 1994 Vegetation Leachate 3 Ecology and Environment ASC April 1994 III. FIELD MEASUREMENTS TAKEN 01 Type 02 Comments Photoionization detector (HNu) No readings above background levels were detected on either instrument on May 2, 1991 or July 7, 1993. Minirad IV. PHOTOGRAPHS AND MAPS 01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
Runoff Spill Soil and Sediment 15 Ecology and Environment ASC April 1994 Vegetation Leachate 3 Ecology and Environment ASC April 1994 III. FIELD MEASUREMENTS TAKEN 01 Type 02 Comments Photoionization detector (HNu) No readings above background levels were detected on either instrument on May 2, 1991 or July 7, 1993. IV. PHOTOGRAPHS AND MAPS 01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
Spill Soil and Sediment 15 Ecology and Environment ASC April 1994 Vegetation Leachate 3 Ecology and Environment ASC April 1994 III. FIELD MEASUREMENTS TAKEN 01 Type 02 Comments Photoionization detector (HNu) No readings above background levels were detected on either instrument on May 2, 1991 or July 7, 1993. IV. PHOTOGRAPHS AND MAPS 01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
Soil and Sediment 15 Ecology and Environment ASC April 1994 Vegetation	
Vegetation Leachate 3 Ecology and Environment ASC April 1994 III. FIELD MEASUREMENTS TAKEN 01 Type 02 Comments Photoionization detector (HNu) No readings above background levels were detected on either instrument on May 2, 1991 or July 7, 1993. IV. PHOTOGRAPHS AND MAPS 01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
Leachate 3 Ecology and Environment ASC April 1994 III. FIELD MEASUREMENTS TAKEN 01 Type 02 Comments Photoionization detector (HNu) No readings above background levels were detected on either instrument on May 2, 1991 or July 7, 1993. Minirad IV. PHOTOGRAPHS AND MAPS 01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
III. FIELD MEASUREMENTS TAKEN O1 Type O2 Comments No readings above background levels were detected on either instrument on May 2, 1991 or July 7, 1993. Minirad IV. PHOTOGRAPHS AND MAPS O1 Type [X] Ground [] Aerial O2 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
III. FIELD MEASUREMENTS TAKEN 01 Type	
Photoionization detector (HNu) Minirad IV. PHOTOGRAPHS AND MAPS O1 Type [X] Ground [] Aerial No readings above background levels were detected on either instrument on May 2, 1991 or July 7, 1993. 101 Type [X] Ground [] Aerial O2 In Custody ofEcology and Environment Engineering, P.C., Lancaster, New York	
(HNu) Minired IV. PHOTOGRAPHS AND MAPS 01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
IV. PHOTOGRAPHS AND MAPS 01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	·
01 Type [X] Ground [] Aerial 02 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
2 In Custody of Ecology and Environment Engineering, P.C., Lancaster, New York	
(name of organization or individual)	
03 Maps 04 Location of Maps	
[X] Yes	•
[] No Ecology and Environment Engineering, P.C., Lancaster, New York	
V. OTHER FIELD DATA COLLECTED (provide narrative description of sampling activities)	
Logbook notes, May 2, 1991, July 7, 1993, and November 30, 1993.	
en e	
VI. SOURCES OF INFORMATION (cite specific references, e.g., state files, sample analysis, reports)	
Ecology and Environment Engineering, P.C., site inspection, May 2, 1991, and July 7, 1993.	

"EPA ____

		· · · · · · · · · · · · · · · · · · ·					
POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT		I. IDENTIFICATION					
			01 State 02 S		Site Number		
PART 7 - OWNER INFOR	MATION		NY 734036				
II. CURRENT OWNER(S)	_	-	PARENT COMPANY (if applicable)				
01 Name Town of Salina	02 D&B Numb	er	08 Name	09 D&B Nu	nber		
03 Street Address (P.O. Box, RFD #, etc.) 201 School Road		04 SIC Code	10 Street Address (P.O. Box, RFD #, etc.)		11 SIC Code		
05 City Liverpool	06 State NY	07 Zip Code 13088	12 City	13 State	14 Zip Code		
01 Name	02 D&B Numb	er	08 Name 09 D&B N		mber		
03 Street Address (P.O. Box, RFD #, etc.)		04 SIC Code	10 Street Address (P.O. Box, RFD #, etc.)		11 SIC Code		
05 City	06 State	07 Zip Code	12 City	03 State	14 Zip Code		
01 Name	02 D&B Numb	oer .	08 Name 09 D&B		mber		
03 Street Address (P.O. Box, RFD #, etc.) 04 SIC Cox		04 SIC Code	10 Street Address (P.O. Box, RFD #, etc.)		11 SIC Code		
05 City	06 State	07 Zip Code	12 City	13 State	14 Zip Code		
III. PREVIOUS OWNER(S) (list most recent first)			IV. REALTY OWNER(S) (if applicable, list most recent first)				
01 Name East Plaza, Inc. (until 1981)	02 D&B Numb	per	01 Name 02 D&B		mber		
03 Street Address (P.O. Box, RFD #, etc.) unknown/unlisted		04 SIC Code	03 Street Address (P.O. Box, RFD #, etc.)		04 SIC Code		
05 City	06 State	07 Zip Code	05 City	06 State	07 Zip Code		
01 Name	02 D&B Numb	per	01 Name 02 D&B		mber		
03 Street Address (P.O. Box, RFD #, etc.) 04 SIC Code		03 Street Address (P.O. Box, RFD #, etc.)		04 SIC Code			
05 City	06 State	07 Zip Code	05 City	06 State	07 Zip Code		
01 Name	02 D&B Numi	ber	01 Name	02 D&B Nu	ımber		
03 Street Address (P.O. Box, RFD #, etc.)		04 SIC Code	03 Street Address (P.O. Box, RFD #, etc.)		04 SIC Code		
05 City	06 State	07 Zip Code	05 City	06 State	07 Zip Code		
V. SOURCES OF INFORMATION (cite specific re	ferences, e.g., stat	te files, sample and	alysis, reports)				

Post Standard Newspaper, 3/6/81, "Suit Settled on Landfill," by J. Pavis. NUS Corporation, 1986, Final Daft Site Inspection Report and Hazard Ranking System Model.

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT		I. IDENTIFICATION					
PART 8 - OPERATOR INFORMATION		01 State	02 Site Nurr	ber ν			
1,221 0 012211011			NY	734036			
II. CURRENT OPERATOR (provide if different	from owner)		OPERATOR'S PARENT COMPANY (if applicable)				
01 Name None	02 D&B Numb	er	10 Name	mber			
03 Street Address (P.O. Box, RFD #, etc.)		04 SIC Code	12 Street Address (P.O. Box, RFD #, et	c.)	13 SIC Code		
05 City	06 State	07 Zip Code	14 City	15 State	16 Zip Code		
08 Years of Operation	09 Name of Ov	vner					
III. PREVIOUS OPERATOR(S) (list most recent first; provide if different from owner)			PREVIOUS OPERATORS' PARENT COMPANIES (if applicable)				
01 Name Town of Salina	02 D&B Numb	er	10 Name	11 D&B N			
03 Street Address (P.O. Box, RFD #, etc.) 04 SIC Code		12 Street Address (P.O. Box, RFD #, et	13 SIC Code				
05 City	06 State	07 Zip Code	14 City	15 State	16 Zip Code		
08 Years of Operation	09 Name of O	wner During this					
01 Name	02 D&B Numl	er	10 Name 11 D&B Num		umber		
03 Street Address (P.O. Box, RFD #, etc.) 04 SIC Code		12 Street Address (P.O. Box, RFD #, e	13 SIC Code				
05 City	06 State	07 Zip Code	14 City	15 State	16 Zip Code		
08 Years of Operation	09 Name of O Period	wner During this					
01 Name	02 D&B Num	ber	10 Name	11 D&B N	umber		
03 Street Address (P.O. Box, RFD #, etc.) 04 SIC Code		04 SIC Code	12 Street Address (P.O. Box, RFD #, etc.)		13 SIC Code		
05 City	06 State	07 Zip Code	14 City	15 State	16 Zip Code		
08 Years of Operation	09 Name of C	wner During this					
IV. SOURCES OF INFORMATION (cite specif	ic references, e.g., st	ate files, sample a	nalysis, reports)				
Site is closed and capped.							

POTENTIAL HAZARDOUS WASTE SITE		SITE	I. IDENTIFICATION				
SITE INSPECTION REPORT PART 9 - GENERATOR/TRANSPORTER INFORMATION			01 State 02 Site Num NY 734036		per		
II. ON-SITE GENERATOR					·		
01 Name 02 D&B Number None							
03 Street Address (P.O. Box, RFD #, etc.) 04 SIC Code							
05 City	06 State	07 Zip Code					
III. OFF-SITE GENERATOR(S)							
01 Name 02 D&B Number General Motors Fisher Guide Division		oer .	01 Name	02 D&B Nu	mber		
03 Street Address (P.O. Box, RFD #, etc.) 1000 Townline Road 04 SIC Code		04 SIC Code	03 Street Address (P.O. Box, RFD #, etc.)	04 SIC Code			
05 City Syracuse	06 State NY	07 Zip Code 13221-4889	05 City	06 State	07 Zip Code		
01 Name Crouse Hinds Company	02 D&B Num	ber	01 Name 02 D&B Numb		mber		
03 Street Address (P.O. Box, RFD #, etc.) Wolf and 7th North Streets		03 Street Address (P.O. Box, RFD #, etc.)		04 SIC Code			
05 City Syracuse	06 State NY	07 Zip Code	05 City	06 State	07 Zip Code		
IV. TRANSPORTER(S)					· .		
01 Name 02 D&B Number A&T Haulers, Inc.		ber	01 Name 02 D&B Num Leaseway Haulers, Inc.		ımber		
03 Street Address (P.O. Box, RFD #, etc.) 04 SIC Code 6267 East Taft Road		04 SIC Code	03 Street Address (P.O. Box, RFD #, etc.) unknown/unlisted		04 SIC Code		
05 City North Syracuse	06 State NY	07 Zip Code	05 City	06 · State	07 Zip Code		
01 Name Mattheison Trash Service	02 D&B Num	aber	01 Name 02 D&B Nu		umber		
03 Street Address (P.O. Box, RFD #, etc.)		04 SIC Code	03 Street Address (P.O. Box, RFD #, etc.)		04 SIC Code		
05 City	06 State	07 Zip Code	05 City	06 State	07 Zip Code		
V. SOURCES OF INFORMATION (cite specific t	references, e.g., at	ate files, sample analy	ysis, reports)				

NYNEX, 1990-1991, Yellow Pages and White Pages for Syracuse Metropolitan area.

Letter from F.J. Giacobbi (GMGF Plant Engineer) to Larry Gross (NYSDEC), 4/3/86

Onondaga County Health Department, 1972, Sanitary Landfill Study, Town of Salina.

POTENTIAL HAZARDOUS WASTE SITE I. IDENTIFICATION SITE INSPECTION REPORT 01 State 02 Site Number **PART 10 - PAST RESPONSE ACTIVITIES** NY 734036 II. PAST RESPONSE ACTIVITIES 01 [] A. Water Supply Closed 02 Date _____ 03 Agency 04 Description: 01 [] B. Temporary Water Supply Provided 02 Date ____ 03 Agency ___ 04 Description: 01 [] C. Permanent Water Supply Provided 02 Date ____ 03 Agency ___ 04 Description: 01 [] D. Spilled Material Removed 03 Agency 02 Date ____ 04 Description: 01 [] E. Contaminated Soil Removed 02 Date ____ 03 Agency ____ 04 Description: 01 [] F. Waste Repackaged 02 Date ____ 03 Agency 04 Description: 01 [] G. Waste Disposed Elsewhere 02 Date 03 Agency ____ 04 Description: 01 [] H. On-Site Burial 02 Date ___ 03 Agency 04 Description: 01 [] I. In Situ Chemical Treatment 02 Date ____ 03 Agency 04 Description: 01 [] J. In Situ Biological Treatment 02 Date _____ 03 Agency 04 Description: 01 [] K. In Situ Physical Treatment 02 Date ___ 03 Agency 04 Description: 01 [] L. Encapsulation 02 Date _____ 03 Agency ____ 04 Description: 01 [] M. Emergency Waste Treatment 02 Date _____ 03 Agency 04 Description: 01 [] N. Cutoff Walls 02 Date _____ 03 Agency ____ 04 Description: 01 [X] O. Emergency Diking/Surface Water Diversion 02 Date ___ 03 Agency ___ 04 Description: Drainage ditch and 48-inch covered culvert was constructed in 1981-1982 to facilitate surface drainage from areas north of the site (i.e., NYS Thruway) to Ley Creek. This was not due to emergency, however. 03 Agency _____ 01 [] P. Cutoff Trenches/Sump 02 Date _____

04 Description:

EPA .

POTENTIAL HAZARDOUS WASTE SITE		I. IDENTIFICATION		
SITE INSPECTION REPORT		01 State		02 Site Number
PART 10 - PAST RESPONSE ACTIVITIES		NY		734036
I. PAST RESPONSE ACTIVITIES (Cont.)				·
	02 Dat	e	03 Agency	
14 Description:				
01 [] R. Barrier Walls Constructed	02 Da	te	03 Agency	
14 Description:				
01 [X] S. Capping/Covering 04 Description: Site was closed and had a partial vegetative cover starting in 197	02 Da 74. Siu	tee was regraded and capp	03 Agencyed in 1981 to 1982.	
01 [] T. Bulk Tankage Repaired	02 Da	ie	03 Agency	
14 1 . Bulk rainage repaired 14 Description:				
01 [] U. Grout Curtain Constructed	02 D	ate	03 Agency	
Of Control of the Con				
01 [] V. Bottom Scaled	02 D	ate	03 Agency	
O4 Description:				
01 [] W. Gas Control	02 D	ate	03 Agency	
04 Description:				
01 [] X. Fire Control	02 D	ate	03 Agency	
04 Description:				
01 [] Y. Leachate Treatment	02 I	ete	03 Agency	
04 Description:				
01 [] Z. Area Evacuated	02 I	Date	03 Agency	
04 Description:				
01 [] 1. Access to Site Restricted	02 1	Date	03 Agency	
04 Description:				
01 [] 2. Population Relocated	02	Date	03 Agency	
04 Description:				•
01 [] 3. Other Remedial Activities	02	Date	03 Agency	
04 Description: No others found in PSA investigation.				
III. SOURCES OF INFORMATION (cite specific references, e.g., state files,	sample	analysis, reports)		
NUS Corporation, 1986, Final Draft Site Inspection Report and Hazard Rs Town of Salina files		- y		•
PSI file search				

POTENTIAL HAZARDOUS WASTE SITE	I. IDENTIFICATION		
SITE INSPECTION REPORT	01 State		02 Site Number
PART 11 - ENFORCEMENT INFORMATION	NY		734036
ENFORCEMENT INFORMATION			
Past Regulatory/Enforcement Action [X] Yes [] No		<u> </u>	
Description of Federal, State, Local Regulatory/Enforcement Action			
Several times during the operation of the landfill the Town of Salina was cited included: on-site burning, dumping into water, leachate observed at site, leach refuse protruding through completed areas, improper spreading and compaction traffic during parts of the year.	ing onto a water course, refuse not cor	ifined to a manageable as	ea, unsatisfactory daily cov-
	•		
•			
•			

NUS Corporation. 1986. Final Draft Site Inspection Report and Hazard Ranking System Model

APPENDIX B

DATA SUMMARY FORMS AND TENTATIVELY IDENTIFIED COMPOUNDS

DATA USABILITY REVIEW

The data usability review for the Salina Town Landfill site consisted of the following:

- Checking chain-of-custody forms and analytical logs to confirm that samples were analyzed for the parameters requested on the chain-ofcustody; and
- Reviewing the data to confirm that NYSDEC and laboratory quality control criteria were met.

These quality control criteria included:

- Holding times;
- Laboratory blank contamination;
- Surrogate recoveries;
- Internal standards area and retention times;
- Matrix spike/matrix spike duplicate (MS/MSD) results;
- Instrument calibration (initial and continuing); and
- For metals, the specific criteria were reviewed and problems noted. These criteria included laboratory method blanks, MS/MSDs, instrument calibration, and ICP interference check samples.

Based on the above-described review a memorandum was generated outlining any problems that affected the usability of the data. This memorandum was submitted to NYSDEC under separate cover as part of the reduced data package. The problems commented on generally included blank contamination and holding time violation, and do not constitute a full data validation effort.

For the Salina Town Landfill site, all data were considered usable as qualified by the data review.

Data qualifiers used in the data summary forms are defined below. Table B-1 which follows provides a list of the PAHs analyzed for (as base/neutral extractables) and shows which are considered carcinogenic.

Defined Qualifiers

- B Analyte is found in the associated blank as well as in the sample.
- J Indicates the value is estimated.
- UJ Indicates the quantitation limits are estimated.
- A Indicates that a TIC is a suspected aldol-condensation product.
- N Indicates presumptive evidence of a compound. Used only for TICs where the identification is based on a mass spectral library search.

Table B-1 POLYNUCLEAR AROMATIC HYDROCARBON (PAH) ANALYSIS LIST Naphthalene 2-Methylnaphthalene 2-Chloronaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracenea Chrysene^a Benzo(b)fluoranthene^a Benzo(k)fluoranthenea Benzo(a)pyrene^a Indeno(1,2,3-cd)pyrene^a Dibenz(a,h)anthracenea Benzo(g,h,i)perylene

Considered carcinogenic (Department of Health and Human Services, 1993).

		1	10		SUMM	ARY FORM	4: VO	LATIL	E S 1						1		
Site Name:	Salina Toum 1930 431 1930 453 Sampling Date(s)	Lar	193	1:(WATER :	SAMPLI (/L)	ES .					To	calculate sa (C		uantitation li Dilution Fa	
Job Number	Sample Number: Dilution Factor:			L- //		Storage 1.0		SW-		SW-		SW.		SW-	-	5W- 1,0	
CRQL	Compound				· ·	Trip bla for 7-	-93			 			r		1		T
10	Chloromethane									l				· .		ļ	一
10	Bromomethane									9	7		-				\vdash
10	Vinyl chloride						-				<u> </u>			 			一
10	Chloroethane				2=	4	BT	13	B	13	B	12	B	15	B	14	B
10	Methylene chloride	4	BJ	4	BJ	4	151	15	B	19	B	15	B	20	B	14	B
10	Acetone	24			 		-		-0		-						
10	Carbon disulfide				├		\vdash										
10	1,1-Dichloroethene				┼─		\vdash										
10	1,1-Dichloroethane				-	ļ				15		5	丁	-5	5		
10	Total 1,2-Dichloroethene						1-1										
10	Chloroform		5					5	亍	-5	I	8	T	9	T	7	J
10	1,2-Dichloroethane		-	·	 				_								
10	2-Butanone		-		 											· -	<u> </u>
10	1,1,1-Trichloroethane				 												<u> </u>
10	Carbon tetrachloride		 		1												丄
10	Bromodichloromethane		1		 												<u> </u>
			╂──┤		 												↓_
					 	 											丄
		 	\vdash		 												1
		 	+		1											<u> </u>	╄
			\vdash		1	1	1-1	·····							<u> </u>	<u> </u>	
		<u> </u>	+-		1										<u> </u>	<u> </u>	<u> </u>
			1		+	· · · · · · · ·	1										<u></u>
		<u> </u>	<u></u>		<u> </u>	<u></u>	<u> </u>		ا ا								

				DATA	SUMM	ARY FORM	t vo	LATIL	ES 2								
Site Name	Salina Town 19301. 453 Sampling Date(s)	Lanc	d-fi][WATER S		ES					To	calculate sar		antitation li Dilution Fac	
Job Number		: <u>-71</u> 7/	7.5			r i	a., 1		,		_	C. /	2				
	Sample Number:	<u> </u>		L-2		Storage 1.0	Blk.	<u> Sw-</u>		SW-		SW-		SW-L	•	5W-5	
	Dilution Factors	1.0		1.0		1.0	'		0	1.0	,	1,0		1,0	,	110	
CROL	Location: Compound																
10	1,2-Dichloropropane																
10	cis-1,3-Dichloropropene			-													
10	Trichloroethene																
10	Dibromochloromethane																
10	1,1,2-Trichloroethane										L						
10	Benzene	3	Ч	4	5												
10	trana-1,3-Dichloropropene									ļ							-
10	Bromoform										<u> </u>		 	ļ			
10	4-Methyl-2-pentanone				ļ						 						-
10	2-Hexanone												ļ				-
10	Tetrachloroethene											 					
10	1,1,2,2-Tetrachloroethane										-	 -					
10	Toluene					<u> </u>				2	1	 	-				
10	Chlorobenzene	27		20	<u> </u>				 				╫─				
10	Ethylbenzene		 		<u> </u>							 	├─	ļ <u> </u>			
10	Styrene			 	<u> </u>		<u> </u>				├						
10	Total xylenes						├─		 		 	 					Π
				<u> </u>			├─		-		-	<u> </u>	 				
			 				-		 		 	 					
			-	 	-	·	 		\vdash		1			1			
		 	 		 	 	1				1						
		·	-	 	-		 		\vdash			1		1			
		ļ.——	-		-	 	 		1		1						
				<u></u>	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>			'	-		<u> </u>		

CRQL = Contract Required Quantitation Limit.

				DATA	SUMM	ARY FORM	4 VO	LATIL	ES 1	*							
Site Name:	Salina Town 19301. 431 1930 Sampling Date(s)	Lanc	1 <u>fi</u> 1 93	(WATER !	SAMPI. //L)	ES					To	ealculate sa (C	mple q	uantitation Dilution Fa	limit: actor)
Job Number	Sample Number: Dilution Factor:	-WSi		SW-	7	SW-		YN37		YR37) .	VBLK		VBLK 1.0		M51	0
CRQL	Location: Compound							Trip bla	nk	Trip bla duplica	nk te		·			Blank spi	ke
10	Chloromethane							31	ļ				<u> </u>		<u> </u>		+-
10	Bromomethane	,							<u> </u>	ļ	 		├		├—	ļ	╁
10	Vinyl chloride									ļ	<u> </u>	· · · · · · · · · · · · · · · · · · ·	 		<u> </u>		╀
10	Chloroethane								<u></u>	<u> </u>	 		 	. 9	-	37	10
10	Methylene chloride	4	BI		BI	8	BJ	.6	B	12	B	5		1	-	21	B
10	Acetone	23		16						24		- '/-	├			7-	10
10	· Carbon disulfide												├			58	十
10	1,1-Dichloroethene				ļ			,		<u> </u>	-		 		-	30	+
10	1,1-Dichloroethane								 	ļ		<u> </u>	-		-	:	T
10	Total 1,2-Dichloroethene	31			 			<u> </u>	-				 				+
10	Chloroform						├			111	 		╁─			 	+-
10	1,2-Dichloroethane	9	J				<u> </u>	39		14		 	 	-			十
10	2-Butanone					<u> </u>	├	<u> </u>	├				╁		-	-	十一
10	1,1,1-Trichloroethane	<u> </u>							├	} -		 	\vdash			 	十
10	Carbon tetrachloride				<u> </u>		-		├-	 	-		 		-	<u> </u>	十
10	Bromodichloromethane			<u> </u>	ļ				-	 			┼─		\vdash	 	+-
					ļ		 		-	 	 	 	 		 	<u> </u>	T
					 	<u> </u>	<u> </u>	 	\vdash	 		 	 		 	1	+
					ļ		 		├─	 	 	ļ ——	+-	 	-	 	1
			<u> </u>		 	<u> </u>	├	ļ	-		-		+	-	 	 	十
					 -	 	-	 	-	 	 		 	 	 		1
			 		├ ─		-	 	 	-	├─	 	\vdash	 	 	1	+
					 		—			 	 	 	 		1	 	十
							<u> </u>			<u></u>	<u> </u>		<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>

				ARY FORM: V C	LATILES 2	!			:
Site Name:	Salina Town 1	andfill	<u> </u>	WATER SAMPI	ÆS				-
Job Number	Salina Town 1 19301. 431 Sampling Date(s	» <u>7/7/93</u>	· .	(µg/L)		· · · · · · · · · · · · · · · · · · ·	To	calculate sample qu (CRQL *	uantitation limit: Dilution Factor)
	Sample Number:	SW-6	SW-7	Sw-8	YN3TB	YR3TB	VBLKWI	VBLKWZ	MSB
	Dilution Factors	1.0	1.0	1.0	1.0	1,0	1.0	1.0	1.0
CRQL	Location: Compound				•				
10	1,2-Dichloropropune		1 - 1 - 1		 				
10	cis-1,3-Dichloropropene		 						
10	Trichloroethene								53
10	Dibromochloromethane								
10	1,1,2-Trichloroethane								
10	Benzene								56
10	trans-1,3-Dichloropropene								
10	Bromoform				<u> </u>				
10	4-Methyl-2-pentanone						 		
10	2-Hexanone		<u> </u>		ļ <u>;</u>	 			
10	Tetrachloroethene				<u> </u>	ļ		 	<u> </u>
10	1,1,2,2-Tetrachloroethane		 	 		 	 	 	CU
10	Toluene	7 J	<u> </u>	 	<u> </u>	 	 		54 54
10	Chlorobenzene			 		 	 		<u> </u>
10	Ethylbenzene		 		 	 			
10	Styrene	<u> </u>	 		 	 		 	
10	Total xylenes		 	 	 	 			
		<u> </u>	 						
			 -		 		 		
			 		 -	 			
		 	+	 	 -	1			
				 	 	 			
			-	 	 	 		 	
L				<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>

CRQL = Contract Required Quantitation Limit.

				DATA	SUMM	IARY FORM:	· vo	LATILE	ts 1								
Site Name:	Salina Town 1 431 19301. 453 Sampling Date(s)	Landf ,: <u>7/7/</u>	311 193			WATER SA (µg/l	AMPLI	•					То	calculate sa. (C	mple qı RQL •	uantitation li Dilution Fac	imit: tor)
CRQL	Sample Number: Dilution Factor:	SW-5 1.C Matrix Spike	MS	SW-S/ 1.0 Matrix s duplica	7												
10	Chloromethane								<u> </u>	<u> </u>	-	<u> </u>	-	 	\vdash	 	
10	Bromomethane							<u>'</u>	<u> </u>	<u> </u>	\vdash	 	 	-			-
10	Vinyl chloride							'	<u> </u>	L					-	 	
10	Chloroethane		<u> </u>	 	<u> </u>				1	 	 	 	-		 	1	
10	Methylene chloride	14	B	15	B					 	+	 	 	<u> </u>		1	
10	Acetone	15	B		B				1		 	 	 				
10	Carbon disulfide		<u></u>		-	 				 	+	 	 	 		 	
10	1,1-Dichloroethene	52	<u></u>	54			-	!	<u> </u>	 	 	 	 	 			1
10	1,1-Dichloroethane		<u> </u>				<u> </u>	!	!	 	 	 	1				T
10	Total 1,2-Dichloroethene	- 11	 			 				 	 	 	 	—			T
10	Chloroform		 	 		 		! -	 	 	 	 		—			
10	1,2-Dichloroethane	8	J	8	J	 			 		+			 			Π
10	2-Butanone		-	1	 		<u></u>	 	 	-	1	—		 			
10	1,1,1-Trichloroethane	 	 	-	-	 	<u> </u>		 	 	 	 	 	 			
10	Carbon tetrachloride			-		 	<u> </u>	 		 	1	 	 				
10	Bromodichloromethane		-	 		 	<u> </u>	1			1	 	T				
		 	 	 	 ,	 	١		 	 	1	 	 			L.	Γ
		 	1-		 	 	<u> </u>	 	 	1	1	1	\top				$\overline{1}$
			 	-	 	 	L ₁	 		 	 	 	1	T			Π
			 		 	1	!	 	-	 	 	 	 		1		Π
			 		-	1	<u> </u>		-	 	 		 	1	T		T
			-	-	-	 	-	 	 	 	 	 	1	1			1
					—	1	<u> </u>			 	+	 	 	 	T	 	1
		<u></u>	<u></u>	<u></u>	<u></u>		<u></u>	<u></u>		<u></u>							

CRQL = Contract Required Quantitation Limit.

DATA SUMMARY FORM: VOLATILES 2 Size Name SALIMA TOWN Localidate sample quantization has (CRQL Dilution Factor 1/2				•		STIMM	ARY FORM	· vo	T. A T I I.	FQ 2								
Sample Numberr Dilution Factors	Site Name	Salina Town	Land	fill		3014141	WATER S	AMPL						To				
Dilution Factor 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,2.Dichloropropane	Job Number	: <u>730 . 453</u> Sampling Date(s):	7 3				i	 						(C	RQL •	Dilution Fa	ctor)
10		Dilution Factor:															:	
10 Cis-1,3-Dichloropropense	CRQL	Compound																,
10	10	1,2-Dichloropropane																<u> </u>
10 Dibromochloromethane	10	cis-1,3-Dichloropropene																<u> </u>
10	10	Trichloroethene	51		53													
10	10	Dibromochloromethane																
10	10	1,1,2-Trichloroethane										L						┟──┤
10 Bromoform	10	Benzene	53		57													╂
10 4-Methyl-2-pentanone	10	trans-1,3-Dichloropropene								<u> </u>				<u> </u>				
10 2-Hexanone	10	Bromoform								·								╂─┤
Tetrachloroethene	10	4-Methyl-2-pentanone								 		_						╂──
10 1,1,2,2-Tetrachloroethane	10	2-Hexanone																╂──
Toluene	10	Tetrachloroethene							<u> </u>	<u> </u>								╂──
10 Chlorobenzene 52 S5	10	1,1,2,2-Tetrachloroethane			1					 		-				 		
10 Ethylbenzene 10 Styrene 10 Total xylenes	10	Toluene								 								一
10 Styrene	10	Chlorobenzene	.52		<u>55</u>						ļ	-				-		╁─
10 Total xylenes	10	Ethylbenzene	·							ļ						 		╁
	10	Styrene	ļ									 	<u> </u>		<u> </u>			╫
	10	Total xylenes								-				 -				╅—
										<u> </u>				 -		-		+
										 		 		 	 			+-
										├		-						+
						 				 	ļ		 			-		+-
										 	ļ	ļ	<u> </u>				-	+
										-		 		 			-	+-
						<u></u>	<u></u>			<u></u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	

$\boldsymbol{\varpi}$
1
N

Site Name:	Salina Town La r. 9301. 453 Sampling Date(s)	<u>nd fil</u>	73	D	ATA S	UMMARY F WATER S (48/	AMPLI		1				To	calculate sar (Cl	mple qu RQL • I	antitation li Dilution Fa	limit actor
Job Numbe	Sample Number: Dilution Factor:	!	4	L-1.0		SW- 1.0		5W-		5W.		SW //		5W.		5W.	
CRQL	Location: Compound								-		<u> </u>						T
10	Phenol		\sqcup														十
10	bis(2-Chloroethyl)ether												 				t
10	2-Chlorophenol										┝╌┤						T
10	1,3-Dichlorobenzene								 	a	5					-	T
10	1,4-Dichlorobenzene	2	11	<u> 2</u>	丁				-	<u> </u>	1						T
10	1,2-Dichlorobenzene	3	J								 						†
10	2-Methylphenol				 				-		-						†
10	2,2'-oxybis(1-chloropropane)				<u> </u>						-						†
10	4-Methylphenol										-		1	· ·			†
10	N-Nitroso-di-n-propylamine				ļ				-		-						Ť
10	Hexachloroethane		├		 -						╁──┤		\vdash			٠.	T
10	Nitrobenzene				 				 								T
10	Isophorone		1		<u> </u>			<u> </u>	├	 	\vdash						T
10	2-Nitrophenol				<u> </u>												†
10	2,4-Dimethylphenol				 					-	-		1				†
10	bis(2-Chloroethoxy)methane				 		<u> </u>				\vdash						T
10	2,4-Dichlorophenol		$oxed{oxed}$		 			<u></u> _	-								T
10	1,2,4-Trichlorobenzene				1		ļ		1	 			1-		 		†
10	Naphthalene								 	 	-		1-				†
10	4-Chloroaniline		1			ļ			┼	-	 		+				7
					 	<u> </u>	 	ļ	┼─	 	+-	 	+		\vdash		†
					 		<u> </u>		4	 	-		+		\vdash		7
					 	ļ	↓		┼	 	+	<u> </u>	┼			 	7
					I			<u> </u>		<u> </u>	<u> </u>			<u> </u>			=

		La Joul		ata si	UMMARY F			2								
Site Name: Job Number:	Salina Town 431 9301, 453 Sampling Date(s):	<u> 7/7/93</u>			WATER SA (#g/		ES					To		RQL •	Dilution Fa	actor)
	Sample Number: Dilution Factor:	L-1 1.0	L-2 10		SW-		SW-		.5W-		SW-	_,_	SW-		SW-	
CRQL	Location: Compound															
10	Hexachlorobutadiene					<u> </u>			1	1	<u> </u>	 		\longmapsto	L	+
10	4-Chloro-3-methylphenol					\Box				 	<u> </u>	-		 		+
10	2-Methy inaphthalene					igsquare				 	!		-	1	<u> </u>	+-
10	Hexachlorocyclopentadiene]	<u>'</u>		<u> </u>		-	-	 	 	-	 	-		+-
10	2,4,6-Trichlorophenol			'			L	-		-	 	 	 	-		+
25	2,4,5-Trichlorophenol			<u> </u>	·		<u> </u>	-	 	-		-	 	-	<u> </u>	+
10	2-Chloronaphthalene					 	<u> </u>	-		-		1	 	-		+-
25	2-Nitroeniline				'		L		 			+	 		 	+-
10	Dimethylphthalate		1	-		-	<u> </u>	-				 		-	 	+
10	Acenaphthylene .			<u> </u>			<u> </u>	<u> </u>				+		 		+
10	2,6-Dinitrotoluene			<u> </u>		-	<u> </u>		 	 	 	-	 	 	 	+
25	3-Nitroaniline			1		-		 	 	 	-	+	 	 	 	+
10	Acenaphthene				L	-	-	 	 	 		+	 	 	 -	+
25	2,4-Dinitrophenol			<u> </u>		-		-		 	 	+	-	 	 	+
25	4-Nitrophenol					-		-	 	-	 	+-	 	 	 	+
10	Dibenzofuran					-		 		 		+	 	 	 	+
10	2,4-Dinitrotoluene			 		-		+	 	 	 	+	 	 		1
10	Diethylphthalate	\ <u> </u>				 	 	 	 	+	 	+-	+	1-	 	+-
10	4-Chiorophenyl-phenylether		<u></u>			 	 	+	 	 	 	+-	+	+-	 	+
10	Fluorene		<u> </u>	-	ļ			+	 	+	 	+-	+	+	 	+
25	4-Nitroaniline		L			 	 	+	 	+	+	+-	+	+-	 	+-
25	4,6-Dinitro-2-methylphenol		<u> </u>			 	 	+	-	+	+	+-		+	 	+
			<u></u>			_	<u></u>	+	+	+	 	+	+	+-	+	+
							<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>

CRQL = Contract Required Quantitation Limit.

Site Name: Job Numbe	Salina Town La 431 r: 9301, 453 Sampling Date(s)	udfi . 7/7/	 93		DATA S	SUMMARY WATER (#1			3 -						RQL •	Dilution Fa	actor
	Sample Numbers Dilution Factors Locations		<u></u>	L-7		.SN/		SW		5W /.t		SW //		SW.	0	SW-	0
CRQL	Compound										,			· · · · · · · · · · · · · · · · · · ·			-
10	N-Nitrosodiphenylamine		·.						<u> </u>				-				╀
10	4-Bromophenyl-phenylether					· · · · · · · · · · · · · · · · · · ·			ļ		 		\vdash	-	_		╁
10	Hexachlorobenzene						ļ		ļ		ļ				<u> </u>		╂
25	Pentachlorophenol		<u>.</u>		 				├	<u> </u>	├		-				╂━
10	Phenanthrene				ļ	:				ļ			\vdash		-		╁
10	Anthracene						 		ļ		 						╁╌
10	Carbezole								-								╀
10	Di-n-butylphthalate	_:							 		<u> </u>						╀╌
10	Fluoranthene								_			<u> </u>					╁
10	Pyrene										 						╀
10	Butylbenzylphthalate							:	 								╁
10	3,3'-Dichlorobenzidine						<u> </u>										╁
10	Benzo(a)anthracene						ļ						 				⊢
10	Chrysene														0 -		0
10	bis(2-Ethylhexyl)phthalate	. 2	BI	2	BI	2	ВЈ			ļ <u>.</u>		J	BJ		ВТ	<u> </u>	B.
10	Di-n-octylphthalate												 				╁
10	Benzo(b)fluoranthene										 						+
10	Benzo(k)fluoranthene										 						╀
10	Benzo(a)pyrene																\vdash
10	Indeno(1,2,3-cd)pyrene				<u> </u>						ļ		1				╂─
10	Dibenz(a,h)anthracene										├						╁
10	Benzo(g,h,i)perylene						 		 		 			-	-		╁
											L						╁—

				ATA S	UMMARY F	ORM:	BNAS 1									
Site Name:	Salina Town 19301, 453 Sampling Date(s)	Landfi'll 7/7/93	•		WATER SA		28					Te	o calculate san (CF	nple qu RQL *	uantitation lis Dilution Fac	mit: ctor)
Job Number	Sample Number:	SW-7	SW-S	7	VBIX	WI	VBLKI	Ne	VBLKV	v4	M SE	3	SW-5/	us	SN-5N	150
	Dilution Factor:	1.0	1.0		1.0		1.0		1.0)	1.0		1.0	Ì	1,0	>
	Locations	7.0	7,0								Blank	L.	Matrix	e	Matrix x duplica	pike ata
CRQL	Compound				 						61		68		73	
10	Phenol				 											
10	bis(2-Chloroethyl)ether	<u> </u>									75		75		80	E
10	2-Chlorophenol	 														
10	1,3-Dichlorobenzene										51		50		54	
10	1,4-Dichlorobenzene	 														
10	1,2-Dichlorobenzene											1				
10	2-Methylphenol	 			 											
10	2,2'-oxybis(1-chloropropane)				 				-				1	\Box		
10	4-Methylphenol		 		 						49		50		53	
10	N-Nitroso-di-n-propylamine		 		 						 	┼──	1			
10	Hexachloroethane		ļ				<u> </u>					1	1			1
10	Nitrobenzene												+			1
10	Isophorone				ļ				 		-	╂──	+	 		T
10	2-Nitrophenol				ļ						 	╁	-	<u> </u>		T
10	2,4-Dimethylphenol				ļ				 	 -		╁──	-	 	1	
10	bis(2-Chloroethoxy)methane	<u> </u>			ļ				 			┼─	 	 	 	
10	2,4-Dichlorophenol								 	 	56	+-	55	 	58	T
10	1,2,4-Trichlorobenzene								 		1 30	╫	1 22	\vdash	138	+
10	Naphthalene								1	-	 	+	+	 	 	+
10	4-Chloroaniline				<u> </u>	<u> </u>			 		 	+-		 	1	+-
					<u> </u>	<u> </u>	ļ	<u> </u>			 	1		+-	+	+
								<u> </u>	ļ	 	 	-		 	+	+
		1 1					<u> </u>					╂		-	 	╁
		1								<u> </u>	<u></u>			<u></u>		<u> </u>
													20			7

CRQL = Contract Required Quantitation Limit.

-- mus/94-DI

$\boldsymbol{\varpi}$
Ī
σ

Site Name:	Salina Town L 19301, 453 Sampling Date(s)	<u>and</u> t	G:[[ATA S	UMMARY F WATER S (42/	AMPL		2		-		To	calculate sa	mple qu	zantitation li	imit:
Job Number	1930/, 453 Sampling Date(s)	. <u>7/7</u>	/93					./4	/4	Var	14/14	MACO		5W-5/		Dilution Fa	
	Sample Numbers	SW-	7	SW		ARTKA				VBLA	W7	MSB		1.0	_	1.6) MRU
	Dilution Factor:	116)	10	ر	/,0	<u>, </u>	1.0)	100	<u> </u>	- 17		710		1.00	
CRQL	Location: Compound								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						· -		_
10	Hexachlorobutadiene													7//		74	├
10	4-Chloro-3-methylphenol										 	78	<u> </u>	74	\vdash	- 77	╁
10	2-Methylnaphthalene										<u> </u>		 				╁─╴
10	Hexachlorocyclopentadiene								<u> </u>								
10	2,4,6-Trichlorophenol										-				-		╁
25	2,4,5-Trichlorophenol							<u></u>	ļ		├	<u> </u>	-				
10	2-Chloronaphthalene								├ ──	 _	├	<u> </u>					
25	2-Nitroeniline								├—	ļ				-			\vdash
10	Dimethylphthalate	4							-				-	ļ	-		
10	Acenaphthylene								↓		-	 	 				
10	2,6-Dinitrotoluene									 				 	 		\vdash
25	3-Nitroaniline									 	-	58	-	54		58	
10	Acenaphthene								 	 	-	3.8		1-3/	_	ع د	
25	2,4-Dinitrophenol							 	 -		 	 , , 		108		75	
25	4-Nitrophenol		<u> </u>		<u> </u>		<u> </u>	<u> </u>	 	 	┼	106	-	<i>U</i>		1	T
10	Dibenzofuran								 	 	├─	57	├─	57	-	60	1
10	2,4-Dinitrotoluene		<u> </u>				 		├	<u> </u>	\vdash	37	\vdash	 	 		1
10	Diethylphthalate						<u> </u>	 	┼	<u> </u>	-		 	 		 	1
10	4-Chlorophenyl-phenylether					<u> </u>	ļ		┼	 	+	 	 	l	 		
10	Fluorene		<u> </u>		ļ		├		┼─	 	+		1	 			1
25	4-Nitroaniline		<u> </u>		<u> </u>	ļ		 	-	1	+	1	\vdash		†		1
25	4,6-Dinitro-2-methylphenol				<u> </u>		 	 	┼	 	+	 	+	 	 	 	1
			<u> </u>		 	 	 	 	╂	 	+	 	1-	1	I	 	1
				<u> </u>		<u></u>	<u> </u>		<u></u>	<u></u>	<u> </u>	<u> </u>	1	<u> </u>		<u> </u>	

			DATA	SUMMARY FORM	L BNAS 3				
Site Name	Salina Town L	andfill	_	WATER SAMP	LES				٠
	Salina Town L 431 11 9301. 453 Sampling Date(s)	7/7/93	-	(µg/L)	1.0		To	calculate sample q	uantitation limit: Dilution Factor)
Job Number				1/01/1/1/1	1/01//1/1/2	I VID I VIAILI	NCO		
	Sample Numbers Dilution Factors	5W-7	SW-8	- -	VBLKWZ	VBLKW4		SW-5MS	N C MSU
	Location:	1.0	1.0	1,0	1,0	1.0	/,0	7,0	7,0
CRQL	Compound					<u> </u>			
10	N-Nitrosodiphenylamine								
10	4-Bromophenyl-phenylether			<u> </u>					
10	Hexachlorobenzene			_	<u> </u>				
25	Pentachlorophenol				<u> </u>	<u> </u>	70	72	73
10	Phenanthrene			<u> </u>					
10	Anthracene				ļ				
10	Carbazole				<u> </u>	 		ļ	
10	Di-n-butylphthalate			<u> </u>				 	
10	Fluoranthene							1,	1/9
10	Pyrene .				 		60	47	49
10	Butylbenzylphthalate				 			 	
10	3,3'-Dichlorobenzidine		ļ		ļ <u>.</u>			 	
10	Benzo(a)anthracene				 			 	
10	Chrysene		<u> </u>				1 0 5		1 3
10	bis(2-Ethylhexyl)phthalate	<u>2</u> J		LIT		 	BI	 	1 10
10	Di-n-octylphthalate				 			 	
10	Benzo(b)fluoranthene							 	-
10	Benzo(k)fluoranthene		 		 	4			
10	Benzo(a)pyrene		 		 	 			
10	Indeno(1,2,3-cd)pyrene			1	 	 		 -	
10	Dibenz(a,h)anthracene				 	1		 	
10	Benzo(g,h,i)perylene				 				 -
					 	 		 	
			<u> </u>			11_			<u> </u>

CRQL = Contract Required Quantitation Limit.

				RY FO	RM: PEST	101	DES A	N D	PCBS						-	
Site Name:	Salina Town L 1931 11 9301, 453 Sampling Date(s)	<u>andfill</u> . 7/7/93			WATER SA (µg/I		ES					To	calculate sar (Cl	nple qu RQL •	antitation li Dilution Fac	mit: ctor)
Job Number	Sample Numbers	L-1	L-2	<u> </u>	SW-/		SW-		SW-		SW-	,	5W-		5W-	
	Dilution Factor:	1.00	1,00)	1.00	2_	1.00	2	1.00	-	7,0	<u></u>	7700			
CRQL	Compound		ļ						1				-			
0.05	alpha-BHC				 											
0.05	beta-BHC				 								·			
0.05	delta-BHC			<u> </u>	 											
0.05	gamma-BHC (Lindane)				 											
0.05	Heptachlor				 											
0.05	Aldrin				 											
0.05	Heptachlor epoxide			 -	 											
0.05	Endosulfan I		ļ													
0.10	Dieldrin		<u> </u>							<u> </u>						
0.10	4,4'-DDE		 		 											
0.10	Endrin				 		·								-	
0.10	Endosulfan II		 -	 	 											
0.10	4,4'-DDD		ļ	<u> </u>	 											
0.10	Endosulfan sulfate		 	├—	 											
0.10	4,4'-DDT	ļ	 		 			 								
0.50	Methoxychlor			 	 			 	 	-						
0.10	Endrin ketone	<u> </u>	 	├	 			-								
0.10	Endrin aldehyde			 			 	-								
0.05	alpha-Chlordane			┼			 	 								
0.05	gamma-Chlordane	<u> </u>	ļ	 			 	-				1				
5.0	Toxaphene		<u></u>	<u>L</u>			<u> </u>	L	<u> </u>				<u></u>	<u>. </u>		

CRQL = Contract Required Quantitation Limit.

			UMMARY F	ORM	PESTI	CIDE	SAND	PC	BS (Cont.)						
Site Name:	Salina Town 431 19301, 453 Sampling Date(s)	Landfill 7/7/93	<u>.</u>		WATER S		ES .				•	To	calculate sa:	mple qu ROL •	antitation li Dilution Fac	mit: tor)
Job Number	Sample Numbers	L-1	L-2	_	SW-	/	SW-	2	SW-	-2	SW-	4	SW-		5W-	
	Sample Numbers Dilution Factors	1.00	10		1,0	\leftarrow	3 / / O		/,0		/,0		/10		1,0	
	Locations	7.00	''		, <u>, , , , , , , , , , , , , , , , , , </u>											
CRQL	Compound												1		1	
1.0	Aroclor-1016															
2.0	Aroclor-1221												· · ·			
1.0	Aroclor-1232		2.6	I												
1.0	Aroclor-1242															
1.0	Aroclor-1248							<u> </u>				-				<u> </u>
1.0	Aroclor-1254															
1.0	Aroclor-1260											 				
				<u> </u>								\vdash	-			_
	:				 			 				-				-
					 					·		-				
					 		· · · · · · · · · · · · · · · · · · ·	 					 			
												 	 			
						-	<u>_</u>					I^-	 		-	
		 						-				 				\Box
		 						 				T	1.			
					 	 						1				
		 			 	 		 		\vdash						
			 			 	 			\vdash		1	1			
	ļ	 			-	 	 	 	 	 	 		<u> </u>		1	
		 				-	 	\vdash	 	<u> </u>		1				Π
		 			 	 		t^{-}				1				Г
		 	ļ			 	 	 	 							1
		 	 		 	 	 	 		 	 	1				Π
		<u> </u>	<u> </u>	<u></u>	<u></u>	<u></u>	<u> </u>	<u></u>	<u></u>	L	<u> </u>	<u> </u>		<u>!</u>		

CRQL = Contract Required Quantitation Limit.

 						0 4 4	. n	DC R G	- 22 3				· · · · ·		
Site Namer	Salina Town L 19301. 453 Sampling Date(s)	andfil . 1/7/93	ATA SUMMAR	Y FORM: PEST WATER S. (#g/	AMPLES L)							calculate sa (C	mple qu RQL •	uantitation Dilution Fa	limit:
CRQL	Sample Number: Dilution Factor: Location: Compound	SW-8 1.00	MSB 1.00 Blank Spik) /10 Matrix	Ma	1,0 trix st		PBLK) 100	√/ 	PBLK 1.C	WZ			·	
0.05	alpha-BHC					-+									上
0.05	beta-BHC		-				·								\downarrow
0.05	delta-BHC		0.51	0.50		.48									╀
0.05	gamma-BHC (Lindane)		0.41	0.45		.44							1		╁
0.05	Heptachlor Aldrin		0.34	0.40		41							 		+
0.05	Heptachlor epoxide				_								-		十
0.05	Endosulfan I												 		十
0.10	Dieklrin		1.0	0.98	$ \frac{1}{0}$	95			<u> </u>				 		
0.10	4,4'-DDE			1.0	- ,	.95									I
0.10	Endrin		1.0	1.0	- 10	. 1-2-									\bot
0.10	Endosulfan II	 -	_			-							ļ		+
0.10	4,4'-DDD	 -											 		+
0.10	Endosulfan sulfate	 	+ 1.1	0.99	0	.97							┼		+
0.10	4,4'-DDT	 -	- -							ļ	ļ		┼	ļ	+
0.50	Methoxychlor Full-in-hetone		1						<u> </u>	<u> </u>	<u> </u>		+	 	十
0.10	Endrin ketone Endrin aldehyde								ļ	<u> </u>			+		十
0.10	alpha-Chlordane							 		-			+-		十
0.05	gamma-Chlordane							 	-	 		 	1	1	十
5.0	Toxaphene								L	<u> </u>	Ь	L			

CRQL = Contract Required Quantitation Limit.

		DATA S	UMMARY FO	RM PESTIC	CIDE	S , AND	P C	BS (Cont.)							
Site Name:	Salina Town 431 1: 9301. 453 Sampling Date(s)		1	WATER S	AMPLI (L)	58				:				antitation lin Dilution Fac	
305,1111101	Sample Number:	SW-8	MSB	1 SW-5	М5	SW-SM	SD	PBLKN	//	PBLK	WZ				
	Dilution Factors	1.00	1.00			1,0		110	-		<u> </u>				
CRQL	Location: Compound								_						
1.0	Aroclor-1016							 -	-						
2.0	Aroclor-1221								\dashv						
1.0	Aroclor-1232														
1.0	Aroclor-1242								\dashv						
1.0	Aroclor-1248				$\vdash \dashv$				-1						
1.0	Aroclor-1254		 -					 -				:	-		
1.0	Aroclor-1260	<u> </u>							\dashv						
								-	一						
<u> </u>		-	 						一						
			 -						一						
					\vdash										
 			 												Ŀ
		 	 -												
															_
 		 													L_
 															<u> </u>
 															
															<u> </u>
 											<u> </u>				-
 	<u> </u>	 											 		₩
		 													├
 															
 												<u> </u>	<u> </u>	<u></u>	<u> </u>
1		<u> </u>	<u></u>												

CRQL = Contract Required Quantitation Limit.

				UMMARY FOR	M: IN	ORGAN	ICS				:				
Site Name:	Salina Town er: 9301, 453 Sampling Date	Landf 101 7/7/93	<u> </u>	WATER S		ES		٠ -		Due to dile	ution,	sample quant See dib		limit is affectible for speci	
	Sample Number: Dilution Factor:	<u>L-1</u>	L-2	Sw-	<i></i>	Sw-	2	SW	-3	Sw-	4	SW-	5	5W-	6
CRQL	Compound														_
200	Aluminum	5,830	4.030	157		150	<u> </u>	179		607		539		95.3	L
60	Antimony														<u> </u>
10	Arsenic	1.5	3.1	1.6		3.1	_	2.9	ļ.—	2.7		5.8	-	4.5	
200	Barium	982	697	83,2		87.7		86.5	<u> </u>	82.3		101		105	⊢
5	Beryllium							ļ.	<u> </u>				-		\vdash
5	Cadmium							<u> </u>							⊢
5000	Calcium	232,000	227,000	183,000		166,000	_	182,000		178,000		124,000		125,000	<u> </u>
10	Chromium	203	124					_				6.3		· · ·	<u> </u>
50	Cobalt	37.7	19.3					<u> </u>							Ë
25	Copper	168	116	2.4		2.1		3.2		8.2		117.1		2, 7	<u> </u>
100 :	Iron	153,000	72,700	372		456	L	479	<u> </u>	1,660		421		362	┢
3	Lead	71.0	63.9	3.0		2.4	ļ	4.7		9.5		<u> </u>		//2 / 20	_
5000	Magnesium	57,000	56,500	30,400		33,500	<u> </u>	31,900		31,700		43,100		43,600	 -
15	Manganese	(071	485	71.4		92.9		101		182		77.2		41.1	⊢
0.2	Mercury	0.32								ļ					⊢
40 :	Nickel	116	53.4				<u> </u>	 						0.500	⊢
5000	Potassium	33,100	38,300	5,680	·	3,630		4,510		5,050		2.760		2,790	\vdash
5	Selenium							<u> </u>			<u> </u>	 			\vdash
10	Silver			·			<u> </u>	111 6						12000	
5000	Sodium	53,700	56,900	111,000		105,000		111,000		110,000		100,000		105,000	╁╌
10	Thallium							 							
50	Vanadium	25.4	16.5					 				7.0	-	1/ 2	 -
20	Zinc	284	201	53.6	13	46.5	ß	37.6	ß	77.1	B	30.9	B	16.0	ß
10	Cyanide							<u> </u>							
								<u> </u>							<u></u>

CRQL = Contract Required Quantitation Limit.

				SUMN	MARY FORM:	NORGANI	C S						
Site Name:	Salina Town r: 9301. 453 Sampling Dates	<u>Landfill</u> ,. <u>7/7193</u>	<u>'</u>		WATER SAM (#g/L)	PLES			Due to diluti			limit is affo	
Job Number	Sample Number:	sw-7	SW-	8	SW-5 S	SW-51	Δ	LCS					
CRQL	Dilution Factors Locations Compound				Matrix Spike	Matrix sp duplica	oike to	Laboratory control sample					
200	Aluminum	2,580	205		2,163	133		1,060					1
60	Antimony				487			1,020					1
10	Amenic	17.6	20.8		51.8	5.72		50.3					4
200	Barium	3.420	99.5		2,003	109		1,050					+
5	Beryllium				49.8			1,020					+
5	Cadmium	13.0			48.1			1,030					+
5000	Calcium	204.000	130,000			122,000		11,300				<u> </u>	╀
10	Chromium	95.10	6.1	B	191	8.15		1,020		_		<u> </u>	+
50	Cobalt	55.2		<u> </u>	464			1,010				 	+
25	Copper	139	2.8	L	214	464		997			_	 	+
100	Iron	244,000	2,500	L	1,390			1,040				 	╁
3	Lead	87.3	1.7		23.4			23.6				 	+
5000	Magnesium	66,000	42,800			42,600		10,500			-		╫
15	Manganese	738	71.4	<u> </u>	549	76.2		1,020				 	╫
0.2	Mercury				1.01							 	+
40	Nickel	96.4			466			1,004				 	╁
5000	Potassium	87.600	2,500			2,610		10,030				 	+
5	Selenium		<u> </u>		9.76			24.0					+
10	Silver				50.8			941	 			1	+
5000	Sodium	235,000	70,400		<u> </u>	99,800		11,670	 			 	+
10	Thallium	<u> </u>			47.3			51.0				 	+
50	Vanadium	25.5			454			970				 	十
20	Zinc	275	104	<u> </u>	506	43.0		1,010	 -		\dashv	 	十
10	Cyanide	28.0		<u> </u>	116	_						+	十

CRQL = Contract Required Quantitation Limit.

	·			DATA	SUMN	MARY FORM	. vo	LATILI	28 1					· · · · · · · · · · · · · · · · · · ·			
Site Name:	Salina Town 431 rs 9301-453 Sampling Date(s	<u>Land</u> 1 7/7/	fil 93			SOIL SA	MPLE		٠			(CRQL •	To Dilutio	calculate ao n Factor) /	mple q	uantitation li % moisture]/	imit: /100)
	Sample Number: Dilution Factor:	SED-		SED- 1.0		SED-3 1.0	}	SED-		SED- 1.0		SED- 1.0		SED- 1.0		SED- 1.C	
CRQL	% Moisture: Location: Compound	28		49		49		<u>5</u> 7	,	81		50		55		73	<u>.</u>
10	Chloromethane																
10	Bromomethane										 						
10	Vinyl chloride										 		 	·			
10	Chloroethane	10	ВТ	34	В	.31	В	50	B	140	B	/3_	BJ	16	BJ	58	B
10	Methylene chloride Acetone	16	B	<u> </u>	В	88		79		170		63		24	B	84	
10	Carbon disulfide	10															<u> </u>
10	1.1-Dichloroethene																\sqcup
10	1,1-Dichloroethane														ļ		
10	Total 1,2-Dichloroethene			5	J				<u> </u>		Ŀ_						-
10	Chloroform									<u> </u>			<u> </u>	ļ			
10	1,2-Dichloroethane									 							1
10	2-Butanone		_												 		
10	1,1,1-Trichloroethane				 				_	 	-		-	<u> </u>			1
10	Carbon tetrachloride						-										
10	Bromodichloromethane	ļ					 			 				<u> </u>			
							 	<u> </u>									
		 		<u> </u>			<u> </u>										
·			1					 									
		 													<u> </u>		1_
		 													L		↓_
											<u> </u>			<u> </u>	<u> </u>	<u></u>	<u></u>
			لسط														

					SÚMI	MARY FORM	£ V C	LATIL	ES 2								
Site Names	Salina Town 19301.453 Sampling Date(s)	Land	lfill	•		SOIL SA	AMPLE /kg)	S				(CROI	7 . • Dilut	lo calculate sai ion Factor) / (j	mple q [100 -	uantitation l % moisture]	limit: /100
Job Number		<u>" — ' </u>	13		_		, 1	CFN	<i>,,</i>	SED-	-	SED-		SED-7		SED-	
	Sample Numbers	SED.		SED.	2	SED-	≥	SED - 1:0	7	1,0		10		1.0		1.0	
	Dilution Factors	1.0		<u> </u>		1.0 49		<u></u>		81		50		55		73	
,	% Moisture:	_ 28		47		77		5_3		2,1							
CRQL	Location: Compound				-		·						T		Ī	<u> </u>	Т
10	1,2-Dichloropropane		+ 4														t
10	cis-1,3-Dichloropropene		<u> </u>			 							1-				T
10	Trichloroethene											<u> </u>	╁──				†
10	Dibromochloromethane	ļ							├		\vdash		 				十
10	1,1,2-Trichloroethane												 			<u> </u>	T
10	Renzene										 -	 	+				十
10	trana-1,3-Dichloropropene								┼				+			<u> </u>	十
10	Bromoform		1						-				+		\vdash		十
10	4-Methyl-2-pentanone		ļi						 	 	 	-	1		 		十
10	2-Hexanone	ļ	1					· · · · ·	┼				+			1	T
10	Tetrachloroethene	<u> </u>		<u> </u>		 			├		\vdash		+-		一	1	T
10	1,1,2,2-Tetrachloroethane	<u> </u>						<u> </u>	┼		+	1	+=		 	-	†
10	Toluene					3	J		+	 ` 	╁	 -	+~		T		†
10	Chlorobenzene					32			┼─		+-	 	+-			1	†
10	Ethylbenzene		1						┼	 	-	 	╁──	 	1	1	†
10	Styrene					 	 			 	╫┈		+-	 	T		1
10	Total xylenes					<u> </u>	<u> </u>	<u> </u>	┨—	 	 	 	╁┈╴		 	-	十
						ļ <u>.</u>			╂—		╁	 	+		 	1	十
						 	 		 	-	┼	 	+-		1	1	+
÷				ļ	<u> </u>	 		 	-	-	+	 	+		+-	1	T
		<u> </u>				ļ		 _	-	ļ	+-	 		 	+-	 	+
į									-	ļ	 	 	+-	 	+	1	十
						L	L		<u> </u>			<u> </u>	<u> </u>				<u> </u>

CRQL = Contract Required Quantitation Limit.

					A SUMN	ARY FORM	ı VO	LATILE	S 1								
Site Name:	Salina Town 1 n 9301. 453 Sampling Date(s)	Land	f;[/	-		SOIL SA						(CROJ. •	To Dilutio	calculate sa n Factor) / (mple q (100 - '	uantitation li % moisture]/	imit: (100)
Job Number	n <u>730 . 453 Sampling Date(s)</u>);						./ 0 1 1/		1,,,,,,	<u> </u>		_==	MSB		SED-5	
	Sample Numbers	<u>SS-</u>		<u>Ss-</u>		<u> </u>		V BLKS		VBLK 1.0		VBLK 1.8		1.0		1.0	
	Dilution Factor:	1.0		1.0		1.0		1.0		1.0				7.0		81	
	% Mointure:	40	2	7		6				 							Y
CROL	Location: Compound															Matri	Ĺ
	Chloromethane				Ī												
10	Bromomethane																
10	Vinyl chloride			<u>-</u>													
10	Chloroethane																
10	Methylene chloride	7	BJ	17	В	1	BJ	15		5	4	16		30	B	230	
10	Acetone			9	BJ					4	7	7	J	(0	I	270	
10	Carbon disulfide												 				
10	1.1-Dichloroethene											-51		350	-		_
10	1,1-Dichloroethane												<u> </u>				
10	Total 1,2-Dichloroethene	· · · · · · · ·															
10	Chloroform												ļ ——				
10	1,2-Dichloroethane							· · · ·					 				-
10	2-Butanone						<u> </u>						-				
10	1,1,1-Trichloroethane				<u> </u>				<u> </u>								
10	Carbon tetrachloride				<u> </u>					 		ļ				 	-
10	Bromodichloromethane			<u></u>										 			
			<u> </u>		<u> </u>								 	 			一
			<u> </u>		<u> </u>		ļ				 	-	\vdash			 	
				·	<u> </u>							ļ			-		+-
					ऻ		 			 	 	-	 			 	
					—				-	 		 	 				
					 		<u> </u>		-			 	-	 	-		
			1	<u> </u>			ļ		L		<u></u>	<u>L</u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	

CRQL = Contract Required Quantitation Limit.

2				, SUMN	MARY FORM	& V	OLATIL	ES 2	ì							
Site Name:	Salina Town L 19301-453 Sampling Date(s)	and fill 1/7/93	- -		SOIL SA	AMPLI /kg)	ES .		:			. • Dilu	To calculate san tion Factor) / ([100 - 1	% moisture]/	(100)
300 .1000	Sample Number:	55-1	55-5 1.0		SS -		VBLKS		YBLKS		VBLK 1.0		MSB1		SED-51	
CRQL	% Moisture: Location: Compound	40	7		ط ا		-		-				-		81	
10	1,2-Dichloropropane									-			 			-
10	cis-1,3-Dichloropropene									 		 			280	\vdash
10	Trichloroethene			<u> </u>			 		-	├—	 	-	57	<u> </u>	1200	一
10	Dibromochloromethane		<u> </u>		 				-	 	 	 	 		 	t^-
10	1,1,2-Trichloroethane			<u> </u>	 		 				 	 	58	 	310	
10	Benzene							<u> </u>	 	 	 	 	1 26	 	1010	T
10	trans-1,3-Dichloropropene			<u></u>			 	 -	 	 	 	 	 		 	T
10	Bromoform			<u></u>			 	ļ	 	 	 	+	1	 	 	T
10	4-Methyl-2-pentanone			└ ─		<u> </u>	 		 	 	 	+	1	 		十
10	2-Hexanone			<u></u>	 	<u> </u>		<u> </u>	 	 	 	+	 	 	 	T
10	Tetrachloroethene		ļ <u>.</u>	_	 		 	 	 	 	 	+	 	-	 	T
10	1,1,2,2-Tetrachloroethane	<u> </u>		-		<u> </u>	 	 	 	\vdash	 	 	55	 	300	十
10	Toluene			<u> </u>		<u> </u>		 	 	 	 	+-	54	 	290	
10	Chlorobenzene		ļ	-		 	1	 	 	 	 	+-	+ 37	\vdash	1 - 10	
10	Ethylbenzene		1		-		1	—	 	+	 	+-	 	\vdash	1	1
10	Styrene	 - -		-	-	-	1	-	 	+-	 	十一	1	T	1	1
10	Total xylenes		 	↓				-	+	 		+	 	T	 	T
				 	 	_	1	 	+	┼──	 	+-		\vdash	 	\top
			 	1	1	<u> </u>	+	 	1	+-	+	+-	 	\vdash	 	T
		<u> </u>	<u> </u>			 		├	 	+	 	+-	+	 	+	1
				1-		 	 	-	 	\vdash	 	+-	+	 	 	+
			ļ	1		 	 	-	 	┼─	 	+-	 	\vdash	1	+-
					<u></u>	<u></u>		<u></u>	<u> </u>			<u> </u>		<u></u>		

CRQL = Contract Required Quantitation Limit.

					SUMN	MARY FORM	. V O	LATILE	S 1			:	-	-			:
Site Name:	Salina Town 19301. 431 Sampling Date(Land 1/7/9	dfil 13	1		SOIL SA					-	(CRQL •	To Dilutio	calculate sa n Factor) / (mple q (100 -	uantitation li % moisture]/	imit: /100)
CRQL	Sample Numbers Dilution Factors % Moistures	SED-5 1.0 81 Matrix s duplice	MSD pike														
10	Chloromethane																
10	Bromomethane					!	,									<u> </u>	
10	Vinyl chloride				<u> </u>			:		·							├
10	Chloroethane		·														
10	Methylene chloride	250	B		<u> </u>	ļ					<u> </u>						
10	Acetone	260			-												
10	Carbon disulfide				 -			· · ·	-								
10	1,1-Dichloroethene	310							-								
10	1,1-Dichloroethane				 	<u> </u>		-							\vdash		
10	Total 1,2-Dichloroethene				 						<u> </u>						
10	Chloroform			·	 												
10	1,2-Dichloroethane	ļ			-	 	-	<u>-</u>								-	
10	2-Butanone				├	 			-								
10	1,1,1-Trichloroethane	ļ			<u> </u>	<u> </u>			· · · · ·		<u> </u>				<u> </u>		
10	Carbon tetrachloride	ļ					 		-								
10	Bromodichloromethane	ļ			 		 					ļ <u></u> .					
				<u> </u>	-	 			 								
		ļ			 -	ļ.———	\vdash		\vdash		_						
					┼		 		 								
		 	<u> </u>		 		 		1								
	. '	 	-	 	 		1		 								
		<u> </u>		 -	╁	 -	1-										
				<u> </u>	<u></u>	<u></u>	<u> </u>	<u> </u>									

CRQL = Contract Required Quantitation Limit.

			٠,	DATA	SUMN	MARY FOR	ME V (LATIL	ES 2	;			·				
Site Name:	Salina Town 1 19301. 453 Sampling Date(s)	<u>andf</u>	<u>ill</u>			SOIL S		S					. ¶	To calculate sa	male a	uentitation 1	limit:
Job Number	131 Sampling Date(s)	: <u> </u>	93		<u> </u>	W	/kg)					(CRQL		ion Factor) / (
	Sample Number:	SED-S	MZIJ														
	Dilution Factor:	1.0	2			-		 									
	% Moisture:	81															
CRQL	Location: Compound				•												T
10	1,2-Dichloropropane															<u> </u>	┼
10	cis-1,3-Dichloropropene										<u> </u>						╁
10	Trichloroethene	270															┿
10	Dibromochloromethane																┼
10	1,1,2-Trichloroethane										ļ						╫
10	Penzene	300															┼
10	trans-1,3-Dichloropropene										-			ļ			╁
10	Bromoform																十一
10	4-Methyl-2-pentanone										 						┿
10	2-Hexanone															<u></u>	╁
10	Tetrachloroethene													 		<u> </u>	十一
10	1,1,2,2-Tetrachioroethane												-	<u> </u>			╁┈╴
10	Toluene	300									 		 				+-
10	Chlorobenzene	280							 				-		-	 	+-
10	Ethylbenzene												-				+
10	Styrene								 -		├		 	 			+
10	Total xylenes										ļ		-			 	+-
												 			 		+-
			-							<u> </u>	├		├		_	 	+
			: •								├	ļ		 	\vdash		+
							-			<u> </u>			-				+
							 				├—		1		\vdash	 	+
		- 2				<u></u>	<u></u>		<u></u>		<u> </u>	L	<u> </u>	<u></u>	<u></u>		

Ske Name:	Salina Town 1 431 eri <u>9301. 453</u> Sampling Date(s	andfill		DATA	SUMMARY SOIL S			1				T	o calculate :	emple	quantitation	a limit:
Job Numbe	T				T = =		T	- //	T		·		ution Factor		·	
l	Sample Number: Dilution Factor:	SED-1	SED-		SED		SED		SED		SED		SED		SED-	
Í	% Moisture:	1.0 28	2.0		1.0		<i>].</i> 5		1.0		1	<u>0</u>	5:		1	0
	Locations	28	1 - 7 - 1		1 - 4		 	<u> </u>		<u>/</u>	5	<u></u>	<u>> :</u>	· · ·	 	<u> </u>
CRQL	Compound		<u> </u>		1								<u> </u>			:
330	Phenol															
330	bis(2-Chloroethyl)ether							<u> </u>			<u> </u>	ļ				
330	2-Chlorophenol			<u> </u>		<u> </u>						<u> </u>	<u> </u>			
330	1,3-Dichlorobenzene			<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>		<u> </u>	<u> </u>	1	
330	1,4-Dichlorobenzene	1			<u> </u>				L	<u> </u>	ļ	<u> </u>	·	<u> </u>		
330	1,2-Dichlorobenzene											<u> </u>	<u> </u>	<u> </u>		
330	2-Methylphenol			<u> </u>				<u> </u>						<u> </u>		
330	2,2'-oxybis(1-chloropropane)															
330	4-Methylphenol										<u> </u>		<u> </u>			_
330	N-Nitroso-di-n-propylamine									· .						
330	Hexachloroethane															
330	Nitrobenzene						•									
330	Isophorone										İ .				•	
330	2-Nitrophenol															
330	2,4-Dimethylphenol										_					
330	bis(2-Chloroethoxy)methane															
330	2,4-Dichlorophenol															1_
330	1,2,4-Trichlorobenzene															
330	Naphthalene		180	Ч												
330	4-Chloroaniline															
			-													

,				D	ATA SU	JMMARY F	ORM:	BNAS 2									
Site Name: Job Number	Salina Town L 9301. 431 Sampling Date(s)	andfi . <u>7/7/</u>	11 93	-		SOIL SA						(CRQL •		calculate as n Factor) / (
	Sample Number: Dilution Factor:	SED 1.0)-/	SED	2	SED- 1.0		SED- 1.0		SED- 1.0	٠,		0	SED-)	SED- 1.1	>
CRQL	% Moisture: Location: Compound	28		49		47	,	50		5		<u>5</u> e		53			<u>э</u>
330	Hexachlorobutadiene																+
330	4-Chloro-3-methylphenol														-	 	+-
330	2-Methylnaphthalene			91	J									 		 	+
330	Hexachlorocyclopentadiene				-										 	 	1
330	2,4,6-Trichlorophenol														 	 	1
800	2,4,5-Trichlorophenol																\top
330	2-Chloronaphthalene											 			 		1
800	2-Nitroeniline		<u> </u>						-		_	 					
330	Dimethylphthalate .		 										 			1	
330	Acenaphthylene		_					•	-							<u> </u>	
330	2,6-Dinitrotoluene											 		 			T.
800	3-Nitroaniline	0.11	_	770	J	75	亍	140	J			86	J		\top	•	1
330	Acenaphthene	84	J	330	J	/5	7	190			-	80	_				1
800	2,4-Dinitrophenol		<u> </u>								_		 				
800	4-Nitrophenol		 		J				-			 	 				1
330	Dibenzofuran		<u> </u>	200	<u> </u>		-							<u> </u>			
330	2,4-Dinitrotoluene	 	 		T				 	 	 	\vdash	T	1		1	T
330	Diethylphthalate			100			 		_	1		1					
330	4-Chlorophenyl-phenylether		-	700	T	71	亍	130	丁	 		70	丁				T
330	Fluorene	66	I	390	屵ᆜ		┝┵	130	1	 		1	T	T			
800	4-Nitroaniline		 				 		 	 	T			1			\top
800	4,6-Dinitro-2-methylphenol	 _	<u> </u>	 	 -		-	 		 	 	 				1	\top
			<u>L</u>		<u> </u>	L_:	<u> </u>	<u></u>					<u> </u>	 			

CRQL = Contract Required Quantitation Limit.

				:	DATA	SUMMARY	FORM	L BNAS	3	•						. ,	
Site Name:	Salina Town L	andf	311	•		SOIL S	AMP1	ES		:							
a a	43 rr 9301. 453 Sampling Date(_			g/kg)							o calculate s			
Job Number	<u> </u>					Ta			 ,	· · ·		7		on Factor) /		% moisture]/100)
	Sample Number:	SED-		SED		SED		SED	-4_	SED.		SED-		SED.		SED-	·8
	Dilution Factors	1.0		2.4		1.0		1.0		1,0		1.0		//		1.0	
:	% Moisture:	25	š	4	9	4	7	5	2	5	/	5	<u> </u>	5	5	7	3
CRQL	Compound]												5.7	1
330	N-Nitrosodiphenylamine	Î				1	T	l	Ī		T		Ī		T		T
330	4-Bromophenyl-phenylether		† —			 	1					<u> </u>	-	1	1		\vdash
330	Hexachlorobenzene											<u> </u>		l .	1		
800	Pentachlorophenol	110	J														\Box
330	Phenanthrene	1000		3,500		920		1,500				640	T	240	J	270	亍
330	Anthracene	110	丁	440	I	110	J	230	J			120	I				
330	Carbazole	79	I	420	5	130	L L	180	J			110	J			:	
330	Di-n-butylphthalate	120	I			88	J			110	J	120	I	<i>5</i> 2	BJ	230	ВЈ
330	Fluoranthene	1,400		5,100		2,000	<u> </u>	2,900		150	J	1,100		420	J	450	J
330	Pyrene	1,100		5,900		1,800		2,400		140	工	1,300		610	I	340	I
330	Buty Ibenzy Iphthalate	,													L		<u></u>
330	3,3'-Dichlorobenzidine					·	<u> </u>			10-74-74-4							Ŀ
330	Benzo(a)anthracene	520		2,400		<i>8</i> 50		1,300				580	J	210	I	180	I
330	Chrysene	630		2,600		1,100		4500				760		270	I	190	J
330	bis(2-Ethylhexyl)phthalate	280	BJ	570	BJ	230	BJ	520	BJ	160	BJ	280	BJ	230	BJ	260	BJ
330	Di-n-octylphthalate														<u> </u>		
330	Benzo(b)fluoranthene	890		3,600		1,600		1,900		84	J	910		380	I	260	I
330	Benzo(k)fluoranthene	260	丁	820	J	. 420	I	760				380	I	140	I		<u> </u>
330	Benzo(a)pyrene	560		1,900		960		00ملرا	<u> </u>			760		280	I	-	<u> </u>
330	Indeno(1,2,3-cd)pyrene	530		00عارا		830		1,400		77	I	660		260	J		<u> </u>
330	Dibenz(a,h)anthracene	73	I	390	J	160	I	290	I			100	J	1.16			<u> </u>
330	Benzo(g,h,i)perylene	480		350	J	940		1,400		78	J	640	\mathcal{I}	140	\mathcal{I}		-
																	<u> </u>

CRQL = Contract Required Quantitation Limit.

				ā.	DATA S	UMMARY F	ORM	BNAS 1	l						
Site Name:	Salina Town La r: 9301. 431 Sampling Date(s):	undfi 1917	93			SOIL SA		2S			i	(CRQL + I	To calculate sample bilution Factor) / ([1	quantitation limit - % moisture]/100	:))
Job Number	Sample Number:	SS-		SS-2	7	SS-3	3	SBLK:	< I	SBLK	' S2	MSB	SED-5 MS		=
	Dilution Factors	2.0			<u>0</u>	1.0		1.0		1.0		1,0	1.0	1.0	
	% Moisture:	40			7	(0							51	6	
CRQL	Location: Compound											Spike blank	Matrix Spike	Natrix spike	
330	Phenol											990	2,300		\Box
330	bis(2-Chloroethyl)ether														4
330	2-Chlorophenol										ļ	1,000	2,100		4
330	1,3-Dichlorobenzene									 					4
330	1,4-Dichlorobenzene				<u> </u>						<u> </u>	930	1,700		\dashv
330	1,2-Dichlorobenzene							<u> </u>			<u> </u>	-		- -	
330	2-Methylphenol				ļ					ļ	 				╢
330	2,2'-oxybis(1-chloropropane)				 			ļ			<u> </u>			 	\dashv
330	4-Methylphenol				 						 	660	1200		ᅦ
330	N-Nitroso-di-n-propylamine				┦			ļ		 	├	660	1,200		ᅦ
330	Hexachloroethane				 			 		 	 			- -	ᅦ
330	Nitrobenzene						<u> </u>	 			 	╂╼┉╼╾╂╾			ᅱ
330	Isophorone								-	 	╂╌━	-			ᅥ
330	2-Nitrophenol					 	-	<u> </u>		<u> </u>	├	 			ㅓ
330	2,4-Dimethylphenol				-				├─	 	+-	 			\neg
330	bis(2-Chloroethoxy)methane					 	-		-	┼	-				\neg
330	2,4-Dichlorophenol			<u> </u>	┥	 			-	 	╂──	1.100	1,800		\neg
330	1,2,4-Trichlorobenzene					<u> </u>	-	 			 	1,100	11-800		\dashv
330	Naphthalene	170	I		╂	 		+	-		+-	 -			\dashv
330	4-Chloroaniline					 	-	 	_	1	-	 			
							├-	 	 	 	-	 -			
				 	-	 	-		-	+	\dagger	 			
						<u></u>	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	<u> </u>		<u> </u>	<u></u>			

CRQL = Contract Required Quantitation Limit.

· · · · · · · · · · · · · · · · · · ·				D	ATA S	UMMARY I	ORM	BNAS	2							
	Salina Town La r: 9301. 453 Sampling Date(s)	andfil <u>7</u> /7/	93	• • • • • • •		SOIL SA		3			(CRQL •	Te Dilutie	o calculate sa on Factor) / (nple qu [100 - 1	untitation l 6 moisture]	imit: /100)
	Sample Number: Dilution Factor: % Moisture:	SS- 2.0 40	<i>J</i> -	55- 16 7		SS- 1.C	_	5BLK 1.5		SBLK 100	 US 1:0		SED-5 1.0 51		55-3/ 1.0	
CRQL	Location: Compound						-					·			- :	T-
330 330	Hexachlorobutadiene 4-Chloro-3-methylphenol	ť									960		1,900			
330 330	2-Methylnaphthalene Hexachlorocyclopentadiene	200	エ													
330 800	2,4,6-Trichlorophenol 2,4,5-Trichlorophenol								,							
800	2-Chloronaphthalene 2-Nitroaniline										1					
330	Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene	69	J													
800 330	3-Nitroaniline Acenaphthene	220	Ъ	31	J	100	J				1,000		1,900		<u>-</u>	
800	2,4-Dinitrophenol 4-Nitrophenol															\vdash
330	Dibenzofuran 2.4-Dinitrotoluene	170	J			<u>52</u>	· · · · ·				 1,000	-	1,100	J		
330 330	Dicthylphthalate 4-Chlorophenyl-phenylether										120	_	1,100			17
330 800	Fluorene 4-Nitroaniline	300	J	43	<u>T</u>	130	J								<i>(</i> 41	1
800	4,6-Dinitro-2-methylphenol															

CRQL = Contract Required Quantitation Limit.

			10.		ATA S	UMMARY I	FORM:	BNAS	3	•							
Site Name:	Salina Town	Land	dfil	1		SOIL SA		3					To	calculate sa	mple qu	antitation l	imit:
Job Number	737 Sampling Date(s	» <u>7/7/</u> 9	73			V -5						(CRQL *		n Factor) / ([100 - 1	6 moisturej	/100)
	Sample Number:	SS-		<i>S</i> S-	2	55-	3	SBLK	SI	SBLK	ัรฉ	MSE			_	55-31	<u>US</u>
	Dilution Factor:	2.0		1.0		1.0		1.0)	1,0	2	1.0	2	1.0		1.0	
	% Moisture:	40		- 7		6						~		5 /		6	
	Locations			•													- 1
CRQL	Compound																П
330	N-Nitrosodiphenylamine																H
330	4-Bromophenyl-phenylether																-
330	Hexachlorobenzene						-					1.600		1,200			
800	Pentachlorophenol	11 4 50		440		750						7,400		7100		400	
330	Phenanthrene	4,000	J	54	工	220	J		\vdash							90	5
330	Anthracene	620	7	40	+	100	4									42	T
330	Di-n-butylphthalate	200	BI	23	BJ	81	BT			31	7					41	BJ
330	Fluoranthene	5.500	10	860	- 5	1,200								130	Н	750	
330	Pyrene	11,000		900		1,600					·	1,000		1,900			
330	Butylbenzylphthalate	11,000				1,000								′			
330	3.3'-Dichlorobenzidine	 															Ŀ
330	Benzo(a)anthracene	3.500		390		670										420	
330	Chrysene	4,800		440		670										420	
330	bis(2-Ethylhexyl)phthalate	630	BJ	80	BJ	عاما		47	J	120	I	83	BJ	140	BJ	54	BI
330	Di-n-octylphthalate												<u> </u>				1
330	Benzo(b)fluoranthene	6,400		620		780								89	I	560	
330	Benzo(k)fluoranthene	1.4.00	·	180	T	320	I									220	11
330	Benzo(a)pyrene	4,500		380		390				<u> </u>				71	J	440	
330	Indeno(1,2,3-cd)pyrene	3,900		33 <i>o</i>	T	330	J							78	I	300	
330	Dibenz(a,h)anthracene	740	J	61	I	93	工		<u> </u>				ļ	<u> </u>	<u> </u>	65	ナ
330	Benzo(g,h,i)perylene	3,600		89	I	49	I		<u> </u>		 	ļ	<u> </u>	80	I	280	I
							<u> </u>			<u> </u>	<u> </u>		<u></u>				

CRQL = Contract Required Quantitation Limit.

Site Name	Salina Town 431 eri 9301. 453 Sampling Date	Lav (a): 7/7	1dfi 193	<u>'</u> [(DAT		RY FOI , SAMI (#g/kg)	LES	S 1			(CP	·OI + 1	To calculat	e sampi	le quantitati	ion limit
	Sample Number: Dilution Factor: % Moisture:	5	0. 1												ory y (I	I - 30 Model	arej/100
CRQL	Location: Compound	Matrix duplic	spike ate														
330	Phenol	2,300					T		T	1	T	+	7	+		+	
330	bis(2-Chloroethyl)ether						1			1	+-	 	+	-			- -
330	2-Chlorophenol	2,100					\top		_	<u> </u>	-	 	+	+	+		
330	1,3-Dichlorobenzene				T^-				1	1	\dashv	 	-	+	+-		
330	1,4-Dichlorobenzene	1,800					7		1		 	 		<u> </u>	+-	 	
330	1,2-Dichlorobenzene	·			7		1				+	 	1-		+	 	—
330	2-Methylphenol	1					1		_	1	1-	-	1-	 -		 	
330	2,2'-oxybis(1-chloropropane)								1	 	1-	 	 	+		 	
330	4-Methylphenol							1	1	 	†	 	+-	 	+-		$+\!\!-$
330	N-Nitroso-di-n-propylamine	1,200					1	1	1	 	 	-	╁─	 	┪	┼	-
330	Hexachloroethane					1			1		_		+	╁───	+	 	
330	Nitrobenzene								1	 	†		+	1	┪	 	
330	Isophorone					1	1		1	1	1-	 	╅─	 -	╁┈╴	 	+
330	2-Nitrophenol					1		 	1	 	+	1	+	 	+	 	+-
330	2,4-Dimethylphenol							1	†	 	1	 	+	 	┨──	+	+
330	bis(2-Chloroethoxy)methane						1	1	1	 	 	 	+-	 	╂	 	+
330	2,4-Dichlorophenol	i							1		 	 	+-	 	+-	 	
330	1,2,4-Trichlorobenzene	1.800					 	 	1	 	 		 	 	-		+
330	Naphthalene	7						l ———	 	 	-	·	 	 	┼	 	+
330	4-Chloroaniline							ļ	1		-		—	 	 	 	╂—-
									 						 	 	╂═┥
		<u> </u>		-													+
												· · · · · · · · · · · · · · · · · · ·	<u> </u>				$oldsymbol{ol}}}}}}}}}}}}}}}}}}$

CRQL = Contract Required Quantitation Limit.

		•			DATA S	UMMARY I	FORM:	BNAS	2							
Site Name: Job Number	Salina Town L 431 rs 9301. 453 Sampling Date(s	andfi » <u>1</u> /7	' 93	•		SOIL SA	AMPLE /kg)	3	-		(CRQL •		calculate se n Factor) / (
CRQL		SED-51 1.0 51	MSD													
330	Hexachlorobutadiene													<u> </u>		Ļ
330	4-Chloro-3-methylphenol	1.800								 L		ļ	· ·			┞
330	2-Methylnaphthalene	,								 		<u> </u>		ļ		<u> </u>
330	Hexachlorocyclopentadiene							·		 				ļ		├
330	2,4,6-Trichlorophenol				<u> </u>					 						↓_
800	2,4,5-Trichlorophenol								<u> </u>	 <u> </u>	·			ļ		ļ
330	2-Chloronaphthalene								<u> </u>	 <u> </u>				ļ		
800	2-Nitroaniline				L				ļ	 		 		 		
330	Dirnethylphthalate .									 			ļ	ļ		ـــ
330	Acenaphthylene					<u> </u>			<u> </u>		<u> </u>	<u> </u>		<u> </u>		ـــ
330	2,6-Dinitrotoluene										 _			<u> </u>		↓
800	3-Nitroaniline							٠.	<u> </u>	 	<u></u>			 		
330	Acenaphthene	1,800			·				<u></u>					↓		1
800	2,4-Dinitrophenol								<u> </u>	ļ		<u> </u>		ļ		ــ
800	4-Nitrophenol	1100	J						<u> </u>	 		<u> </u>		ļ		├
330	Dibenzofuran						L					<u> </u>		 		┼
330	2,4-Dinitrotoluene	1,100	T						ļ	 		<u> </u>		<u> </u>		↓_
330	Diethylphthalate						<u> </u>		<u> </u>					<u> </u>		ـــ
330	4-Chlorophenyl-phenylether								<u> </u>			<u> </u>		ļ	ļ	1-
330	Fluorene								<u> </u>	 	ļ	ļ	ļ	<u> </u>		╀
800	4-Nitroeniline	·										 		ļ		ـــــــــــــــــــــــــــــــــــــ
800	4,6-Dinitro-2-methylphenol									 		ļ		_		╀-
300									<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>

CRQL = Contract Required Quantitation Limit.

					DATA	CIDALA	FOR		_	 							
Site Name: Job Number	Salina Town 431 r. 9301. 453 Sampling Date(Lana 11/7	1fi1.		DATA	SUMMARY SOIL S			3		;	(CRQL	1 • Dilut	o calculate	sample / ([100	quantitation - % moistur	a limit: e]/100)
CRQL	Sample Numbers Dilution Factors % Moistures Locations Compound		Ms(
330	N-Nitrosodiphenylamine								I							1	T
330	4-Bromophenyl-phenylether																\mathbf{I}^{-}
330	Hexachlorobenzene							1									
800	Pentachlorophenol	1,200	I		ļ												
330	Phenanthrene					·	<u> </u>	<u> </u>		<u> </u>	<u> </u>	·		l			<u> </u>
330	Anthracene	·															
330	Carbazole						<u> </u>		<u> </u>								
330	Di-n-butylphthalate				<u> </u>		<u> </u>		<u> </u>								
330	Fluoranthene .	120	I						<u> </u>	<u> </u>							
330	Pyrene	1,800															
330	Butylbenzylphthalate				<u> </u>												
330	3,3'-Dichlorobenzidine										<u> </u>						·
330	Benzo(a)anthracene				·												
330	Chrysene																
330	bis(2-Ethylhexyl)phthalate	170	B														
330	Di-n-octylphthalate																
330	Benzo(b)fluoranthene	78	I														
330	Benzo(k)fluoranthene																
330	Benzo(a)pyrene																
330	Indeno(1,2,3-cd)pyrene	68	7														
330	Dibenz(a,h)anthracene		\neg														
330	Benzo(g,h,i)perylene	75	丁														
				•													

CRQL = Contract Required Quantitation Limit.

		DA	ATA SUMMA	RY FO	RM: PES	TIC	IDES A	AND	PCBS							
Site Name:	Salina Town	Landfill			SOIL S							T.				
Job Numbe	er: <u>9301. 453</u> Sampling Date(s	» <u>7/7/93</u>			V-1					-	(CRQL	Dilutio	n Factor) /	([100 -	uantitation % moisture	limit: -]/100)
	Sample Number:	SED-1	SED-	ک	SED	-3	SED	-4	SED	5-5	SED	-6	SET	·7	SED	-8
	Dilution Factor:	10.0	5.0		5.00		5.0		1.6	00	2.0	00	1.0	0	110	0
	% Moistures	26	44		40	7	- 5	3	80	2	57			5	- 7	3
CRQL	Location: Compound														,	
1.7	alpha-BHC															T
1.7	beta-BHC															
1.7	delta-BHC															
1.7	gamma-BHC (Lindane)															
1.7	Heptachlor															
1.7	Akirin															
1.7	Heptachlor epoxide							<u> </u>	,							
1.7	Endosulfan I															
3.3	Dieldrin															T
3.3	4,4'-DDE															\mathbb{L}
3.3	Endrin															
3.3	Endosulfan II														-	
3.3	4,4'-DDD															
3.3	Endosulfan sulfate															
3.3	4,4'-DDT	* **												·		
17	Methoxychlor															
3.3	Endrin ketone															
3.3	Endrin aldehyde															
1.7	alpha-Chlordane															
1.7	gamma-Chlordane															
170	Toxaphene															1

CRQL = Contract Required Quantitation Limit.

DATA SUMMARY FORM: PESTICIDES AND PCBS (Cont.)																	
		D	ATA S	IUMMARY I	FORM:	PESTIC	HDI	ES AND	PC	BS (Cont.)						
Site Names	Salina Town L 131 12 9301, 453 Sampling Date(s)	<u>andti</u>	<u> </u>		•	SOIL SA		8	•				To	calculate san	nple qu	antitation li	imit:
Ich Number	1930 43 Sampling Date(s)	<u>7/7</u>	193			[/ga)							Dilution	n Factor) / ([[100 - 7	5 moisture]/	/100)
, , , , , , , , , , , , , , , , , , ,	Sample Numbers	SED.	-1	SED	- ي	SED	-3	SED-	4	SED-	5	SED-		SED-		SED-	
	Dilution Factors	10.0		5.00	0	5.00	2	5.0		1,00	0	2.00		1.00		1.0	
	% Moisture:	20		44		49		5-3	3	80	2	50	2	.55	<u> </u>	73	<u> </u>
	Locations		:	[· 1				ĺ								
CRQL	Compound	<u> </u>		 		†					-	T					
33	Arocker-1016	 	-			 		 						[]	\Box		
62	Aroclor-1221				-		<u> </u>								<u>'</u>		<u> </u>
33	Aroclor-1232	2,200	T	1,200		1,200	<u> </u>	2,000						370	'	\	<u></u>
33	Aroclor-1242 Aroclor-1248	عالام	┸	1,200	 	1 1 2 3		1				570			<u> </u>	<u> </u>	<u></u>
33	Aroclor-1248 Aroclor-1254	 	 		—									<u> </u>	لبا		_
33	Aroclor-1260	 	 													<u> </u>	
23	140001-1400	 										ļ				<u> </u>	-
			T										-	 		<u> </u>	
<u> </u>			1					·			<u> </u>		-		<u> </u>		-
-									<u> </u>			-	-			 	+
									<u> </u>		<u> </u>	-	 	 			+
									<u></u>		<u> </u>	 			-	 	+
									<u></u>		<u> </u>	 	 	 	-	-	+
					<u></u>		<u> </u>		<u></u>		 	1		1	 	 	+
							<u> </u>		-	+	 	 	 	 	+-	 	+
											 		 		 	 	+-
					<u></u>	-			 	-	-	+	+	 	 	 	+
					<u></u>	-			-	+	-	+	+	 	 	 	+
	<u></u>				<u> </u>		<u></u>		-	+	-		+-		 	 	十
			<u></u>		<u></u>	-			-	-	 	 	+	 	 	 	+
					_	ļ	<u></u>	 		+		 	+-	+	 	 	+
 			1	l	1	1		1	<u></u>	<u></u>		<u></u>	<u></u>	<u></u>			

DATA SUMMARY FORM PESTICIDES AND PCBS													
Site Name:	Salina Town L 431 17: 1301, 453 Sampling Date(s)	andfill	- .	SOIL SAMPLE	ēs .		To	calculate sample	mentitation limit:				
Job Numbe	130 431 Sampling Date(s)): <u>7/7/93</u>		(#g/kg)				n Factor) / ([100 -					
	Sample Number:	.SS-1	SS-1 DL	Ss-2	SS-3	PBLKSI	PBLK52	MSBQ	SED-5MS				
	Dilution Factors	10.0	100	1.00	1.00	1.00	1.00	1.00	1.00				
	% Moistures	39	.39	7	6				80				
	Locations						·						
CRQL	Compound					 							
1.7	alpha-BHC		 			 							
1.7	beta-BHC												
1.7	gamma-BHC (Lindane)							18	63 J				
1.7	Heptachlor							18	67				
1.7	Aldrin							16	67				
1.7	Heptachlor epoxide					ļ	<u> </u>		 				
1.7	Endoeulfen I						 	00	120				
3.3	Dieldrin				 	.		_33	120				
3.3	4,4'-DDE	 	<u> </u>		4.5 J	 		32	100 J				
3.3	Endrin	<u> </u>			 		 	- 5 × -	1,00 0				
3.3	Endosulfan II	 	 -		-	-							
3.3	4,4'-DDD				 	+	 						
3.3	Endosulfan sulfate		 		+	 	 	3.4	110				
3.3	4,4'-DDT		 		 								
17	Methoxychlor	 	 		 								
3.3	Endrin ketone												
3.3	Endrin aldehyde alpha-Chlordane	 	 		1								
1.7	gamma-Chlordane								<u> </u>				
								<u> </u>					
170	Toxaphene												

CRQL = Contract Required Quantitation Limit.

Sh N	Salina Town	Lana	DATA S f;'	SUMMARY I	FORM:	PESTI			P C	BS (Cont	.)		•				
Jak Number	Salina Town 1431 14301. 453 Sampling Date(s	» 7/7/	93	-			(kg)		•			(CRQL •	To Dilutio	calculate sa n Factor) / (mple q [100 -	uantitation li % moisture]/	iunit: /100)
J00 110000	Sample Number:	SS-		<u>SS-1</u>		55-2		SS-		PBLK		PBLK 1.C		MSB 1.0		SED-5	
	Dilution Factors % Moistures	10.0 39)	30		1.0	00	1.0		-	,	-		7.0		80	
CRQL	Location: Compound																T
33	Aroclor-1016							· 									\vdash
62	Aroclor-1221		 				-		-								
33	Aroclor-1232 Aroclor-1242		 				\vdash										
33	Aroclor-1248	18,000	TC.	30,000	JDC.	59		36	J								_
33	Aroclor-1254	10,000		,,,,,		23	H	16	I				<u> </u>				├-
33	Aroclor-1260									 		<u> </u>	├—				├
-				<u> </u>					_	 	 		-				一
			<u> </u>	<u> </u>							-						T
		ļ															
		<u> </u>															Ŀ
													<u> </u>		·		┞
									<u> </u>	ļ			├				╁╾
						ļ				<u> </u>	-		-		┢		\vdash
	·	<u> </u>			_		-			 	-						\vdash
									-		-						
		 	-		_	 											oxdot
<u> </u>		 	_													<u> </u>	ـ
		1								ļ			<u> </u>				╀
									<u> </u>	 			├	 	├		╁
							<u> </u>	l	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		<u></u>

CRQL = Contract Required Quantitation Limit.

DATA SUMMARY FORM: PESTICIDES AND PCBS																	
Site Name:	Salina Town rs 9301. 453 Sampling Date(s	Lano	Ifi'l	<u>'</u>		SOIL S		3					т.		la	uantitation l	limie a
Job Numbe	ri 930 453 Sampling Date(s	» <u>7/7</u>	193			(41	/kg)					(CRQL *	Dilutio	n Factor) /	([100 - 4	% moisture]	/100)
	Sample Number:	SED-S	MSI														
•	Dilution Factor:	1.0															
	% Moisture:	80															
CRQL	Location: Compound			·													
1.7	alpha-BHC				T		Т		T		Ī						
1.7	beta-BHC				1									•	<u> </u>		↓
1.7	delta-BHC														├	<u> </u>	—
1.7	gamma-BHC (Lindane)	69	I						<u> </u>		ļ				-		┯
1.7	Heptachlor	70			 				 	<u> </u>	<u> </u>			 -	} —		╂─
1.7	Aldrin	109			ļ		 		 		├─	<u> </u>			┼─	 	+-
1.7	Heptachlor epoxide	ļ			-		╂—		 		-				┼		1
1.7	Endorulfan I				-	 	 		-	<u> </u>	-				 		+
3.3	Dieldrin	140			 	 	┼─		╫┈	<u> </u>	 			 	 		1
3.3	4,4'-DDE	100	-		╂	 	╫		.		 						1
3.3	Endrin	100	I	 -	┼─		┼─		-		1						T
3.3	Endosulfan II			<u></u>	+	-	+		1								
3.3	4,4'-DDD		}		+	1	1		1								
3.3	Endosulfan sulfate 4,4'-DDT	120			1		1										1
17	Methoxychlor	1	1												<u> </u>		—
3.3	Endrin ketone										<u> </u>				 	 	+-
3.3	Endrin aldehyde								<u> </u>	ļ					-	ļ	+-
1.7	alpha-Chlordane									<u> </u>	 	ļ	 		┼	 	┼
1.7	gamma-Chlordane					<u> </u>	↓		<u> </u>	ļ	ļ			ļ	-	-	+
170	Toxaphene				_L_	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	ــــــــــــــــــــــــــــــــــــــ

CRQL = Contract Required Quantitation Limit.

·								****									
		D	ATA SU	UMMARY I	ORM	PESTI	CIDE	S AND	PC	BS (Cont	.						
Site Name:	Saling TOWN 431 9301, 453 Sampling Date(s)	Lanc	d fi	! [SOIL SA		3					To	calculate sa	mple q	antitation li	mit:
Job Number	9301. 453 Sampling Date(s)	<u>, 7/7</u>	93									(CRQL •	Dilutio	n Factor) / ([100 - 1	6 moisture]/	100)
	Sample Numbers	SED5	MSD			<u> </u>										·	
	Dilution Factor:	1.00	2														
	% Moisture:	80															
CRQL	Location: Compound																
33	Aroclor-1016																
62	Aroclor-1221																
33	Aroclor-1232																
33	Aroclor-1242										<u> </u>						
33	Aroclor-1248												_				_
33	Aroclor-1254										-						_
33	Aroclor-1260												 				
													 				
	<u>:</u>		-														
4.4																	
			$\vdash \vdash \vdash$					٠.			1						·
			\vdash														
				<u> </u>	H												
		7															
																	
													ļ				-
														 		 	-
					<u> </u>	<u> </u>				ļ		<u> </u>	├	 	-		
					 							<u></u>	-		-		
							<u> </u>		ļ	 		 	 	 	1	 	
							<u></u>				<u></u>	<u> </u>	<u> </u>	<u> </u>		<u></u>	

CRQL = Contract Required Quantitation Limit.

				MMARY FORM:	INORGANICS	B			
Site Name:	Salina Town	Land	<u>fil</u> l	SOIL SAMI			Due to dilution,	sample quantitation	
Job Number	r: <u>930/. 453</u> Sampling Date(s	» <u>7/7/9</u>	3		····	·	- <u>-</u>		able for specifics.
	Sample Number:	SED-1	SED-2	SED-3	SED-4	SED-5	SED-6	SED-7	5ED-8
	Dilution Factors								
	% Solider	72.4	51.4	57.2	47.5	18.	49.6	45.2	26.60
	Locations	:							
CRQL	Compound	0 700	1// 12.01	1/ 2/01	(0/ 0	10.300	6,050	6.160	1,080
40		2,790	4,120	6,710	6,060	10,300 91.5	6,030	10,760	1,000
12	Antimony	2 0		5.2	6.5	40.9	8.9	4.0	117
2	Amenic	2.9	5.4		78.9	198	75.8	347	237
40	Barium	40.2	54.5	93.4	- / X · 7 -	1//8-1	1/3.3	 2// 	
1	Beryllium			0.42	1,7		 	7.4	
1	Cadmium		140000	2.2		1,9,00	52,700	56,200	86,500
1000	Calcium	103,000	48,900	57,800	<i>59,700</i>	69,000		109	06,300
2	Chromium	28.3	29.0	44.3	56.6	28.1	34.0 5.9	17.9	7.9
10	Cobalt	4.5	6.2	6.5	6.0	14.6		146	16.9
-5	Соррег	70.7	56.2	76.6	83.1	47.6	54.3	54.500	24,460
20	Iron	12,100	11,500	13,000	14,900	34,200	15,800 98.0	151	35.6
0.6	Lead	83.5	72.1	84.2	81.3	61.8		20,800	5,360
1000	Magnesium	12,500	12,400	15,700	15,200	19,100	15,700	363	129
3	Manganese	223	_ ಎಎಎ _	247	<u> </u>	476	3.56	363	121
0.2	Mercury				 	110.9	21.6	51.8	1/.8
8	Nickel	16.0	19.6	40.0	27.0	40.9		1,400	 //:
1000	Potassium	429	813	1,780	1,350	3,070	1,580	14400	
1	Selenium		0.46			1651	 	 	
2	Silver			_		5.2	-	7/1/	806
1000	Sodium							741	1000
2	Thellium			0.43		1000	100	122.0	 -
10	Vanadium	9.7	13.7	22.2	20.6	33.7	17.9	22.0	5.5
4	Zinc	133	176	223	246	223	262	304	73.3
2	Cyanide	0.82	1.4			3.4	<u> </u>		

CRQL = Contract Required Quantitation Limit.

				DATA	SUMN	ARY FOR	ALIN	ORGANIC	C S				- · · -		
Site Name:	Salina Town	Landt	311		· · ·	SOIL SA	MPLE				gg ass . s		ادم علم	ti	الماسا
Job Number	13 9 <u>301, 453</u> Sampling Date(s			_		(mg	(kg)				Due to dilution,			ble for spec	
	Sample Numbers	55 -		SS-	2	55-3	3	SED-5	S SED-S	D	LCS				
	Dilution Factors														
	% Solide:	59.5	Š	93.4	4	94.3	2	18.8	18.8						
CROL	Location: Compound				:			Matrix 5pike	Duplica	ite	Control sample				
40	Ahminum	3,200		4.160		1,900			11,300		322				
12	Antimony	7,000		111111				495			250				<u> </u>
2	Amenic	15.4		6,1		3.0		80.3	46.2						<u> </u>
40	Barium	172		68.8		ما،38		2,410	237		5.2				
1	Beryllium	0.70		0.36				57.0			19.2				
1	Cadmium	6.9						SIL			40.2	<u> </u>	_		
1000	Calcium	47.400		81,500		61,400			73,000		206,200				╂
2	Chromium	1.920		14.2		7.0		262	27.2		/03				┼
10	Cobalt	9.8		7.1		5.3		540	/3.1		146				╂─
5	Соррег	485		18.7		20.4		3 5	52.0		Cerlo 50	<u> </u>			╂─
20	Iron	10,400		9,600		5,470		-	43,000		24,600				╂─
0.6	Lead	330		27.2		<i>2</i> 5.2		572·	74.8		213				╁
1000	Magnesium	9,160		21,400	<u>. </u>	12,500			17,800		123,860		-		+-
3	Manganese	197		.319		262		1,060	510		201 17.0				†
0.2	Mercury	0.40						2.70	38.1		1,2,0				T
8	Nickel	484		12.6		8.6	9	563	2,400		58.3				1
1000	Potassium	338	ß	615	В	261	B	1000	- 2,700		30.0	 			1
1	Selenium	0.82		· · · · · ·	 			10.5			17.8	 			\top
2	Silver	4.0		200		adil		73.0	390		68.2		1		
1000	Sodium	627		255	 	98.4		55.0	310		0,0	 	†		\top
2	Thellium	0.43		0.25		6		57.0	34.1		66.8	 	1		\top
10	Vanedium	25.7		20.4	 	5.9		850	375		190				T
4	Zinc	481		40.5	 	36.2							f		T
2	Cyanide	2.6		0.70	<u> </u>	<u> </u>		26.S				<u> </u>	Ц		

CRQL = Contract Required Quantitation Limit.

VOLATILE ORGANICS ANALYSIS DATA SHELL TENTATIVELY IDENTIFIED COMPOUNDS

SED-4

, Name: E & E INC.

Contract:

) Code: EANDE

Case No.: 431

SAS No.:

SDG No.: SED-1

67031 Lab Sample ID:

trix: (soil/water) SOIL

Lab File ID:

mple wt/vol:

5.0 (g/mL) G

н1555

(low/med) LOW vel:

Date Received:

07/07/93

Moisture: not dec.

Date Analyzed: 07/13/93

53

Dilution Factor:

Column: VOCOL

0.530 (mm) ID:

Soil Aliquot Volume:

(uL)

il Extract Volume:

(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

Jumber TICs found:

umber TICS round	u ·		FCT	CONC.	Q	ĺ
CAS NUMBER ====================================	COMPOUND NAME ===================================	RT = ====== 23.85 24.58	======	20 34	===== J J 	

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SED-5

.ab Name: E & E INC.

contract:

Jab Code: EANDE Case No.: 431

SAS No.:

SDG No.: SED-1

1atrix: (soil/water) SOIL

Lab Sample ID:

67032

Sample wt/vol:

5.4 (g/mL) G

Lab File ID:

н1556

Date Received:

07/07/93

Level: (low/med) LOW

Date Analyzed: 07/13/93

Moisture: not dec. 81 GC Column: VOCOL ID:

 $0.530 \, (mm)$

Dilution Factor:

(uL)

Soil Aliquot Volume: (uL)

Soil Extract Volume:

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Number TICs found:

3

EST. CONC. RT COMPOUND NAME CAS NUMBER ====== 100 J 22.93 UNKNOWN HYDROCARBON 25 J 23.61 UNKNOWN HYDROCARBON J 25 2. 23.66 UNKNOWN 3.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

ss-1

ab Name: E & E INC.

Contract:

ab Code: EANDE Case No.: 431

40

SAS No.:

SDG No.: SED-1

atrix: (soil/water) SOIL

Lab Sample ID: 67169

Lab File ID:

н1577

ample wt/vol:

5.0 (g/mL) G

Date Received:

07/09/93

evel: (low/med)

LOW

Moisture: not dec.

Date Analyzed:

07/13/93

Column: VOCOL

 $0.530 \, (mm)$ ID:

Dilution Factor:

oil Extract Volume:

(uL)

Soil Aliquot Volume:

(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Number TICs found:

			The second secon	1	١.
CAC NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
CAS NUMBER			=========	=====	
	=======================================	4.79	i 9	i.j	1
1	UNKNOWN	4.73	!	-	í
		· ·		l	1
-					

SED-1

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 431 SAS No.:

SDG No.: SED-1

Matrix: (soil/water) SOIL

67028 Lab Sample ID:

Lab File ID: E4070

Sample wt vol: 30.0 (g/mL) G

Level: (low/med) LOW

Date Received: 07/07/93

Date Extracted: 07/12/93

% Moisture: 28 decanted: (Y/N) N

Concentrated Extract Volume: 500.0 (uL)

Date Analyzed: 07/21/93

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y pH:

7.8

Number TICs found: 20

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 12-14-22 4. 5. 6. 7.	=====================================		2100 2200 1500 250 580 300 760	===== J J ABJN J J BJ
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	UNKNOWN HYDROCARBON UNKNOWN	11.16 13.07 16.25 19.05 20.24 22.60 25.72 26.32 30.61 33.35 34.61 37.49	250 1900 1900 420 210 300 650 210 440 350 420 350 390	J BJ J J J J J J J

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SED-2

_b Name: E & E INC.

Contract:

b Code: EANDE

Case No.: 431 SAS No.:

SDG No.: SED-1

atrix: (soil/water) SOIL

Lab Sample ID:

mple wt/vol:

30.0 (g/mL) G

Lab File ID:

E4198

67030

evel: (low/med) LOW

Date Received: 07/07/93

oncentrated Extract Volume: 500.0

Moisture: 49 decanted: (Y/N) N

Date Analyzed: 07/29/93

Date Extracted: 07/12/93

njection Volume: 2.0(uL)

Dilution Factor:

2.0

C Cleanup: (Y/N) Y

7.7 pH:

(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

umber TICs found: 20

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1. 2. 3. 12-34-22 4. 5. 6. 7. 8. 13-26-50 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	UNKNOWN UNKNOWN Aldol Condensation Product UNKNOWN UNKNOWN UNKNOWN METHY 9H-FLUORENE ISOMER & U Dibenzothiophene UNKNOWN PAH UNKNOWN HYDROCARBON UNKNOWN	4.60 5.45 5.70 6.01 7.83 10.97 22.44 23.13 25.16 25.32 26.07 26.83 28.95 29.16 30.92 31.05 35.36 35.89 37.61 40.96	4200 4600 2300 590 490 780 550 390 460 850 810 360 650 420 490 1500 1300 980	J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SED-3

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 431

SAS No.:

SDG No.: SED-1

Matrix: (soil/water) SOIL

Lab Sample ID: 67029

Sample wt vol: 30.0 (g/mL) G

Lab File ID:

E4098

Level: (low/med) LOW

Date Received: 07/07/93

% Moisture: 19 decanted: (Y/N) N

Date Extracted: 07/12/93

Concentrated Extract Volume: 500.0 (uL)

Date Analyzed: 07/22/93

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y

pH: 7.7

Number TICs found: 20

CAS NUMBER	COMPOUND NAME	 RT	EST. CONC.	Q
====================================	====================================	4.77 5.62 5.85 8.24 8.65 9.78 11.13 13.01 16.19	3100 3300 910 720 420 1100 750 2800 2700	J J ABJN J BJ BJ BJ
9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	UNKNOWN HYDROCARBON UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN HYDROCARBON UNKNOWN HYDROCARBON UNKNOWN HYDROCARBON UNKNOWN HYDROCARBON UNKNOWN UNKNOWN HYDROCARBON UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN	22.58 25.65 29.04 30.53 33.28 34.22 35.50 36.07 36.18 37.77 37.99	590 620 720 490 460 1100 850 2600 1600 680 680	BJ J J J J J J J

Lab Name: E & E INC.

Contract:

_ab_Code: EANDE Case No.: 431 SAS No.:

SDG No.: SED-1

Matrix: (soil/water) SOIL

Lab Sample ID: 67031

sample wt vol: 30.0 (g/mL) G

Lab File ID: E4058

evel: (low/med) LOW

Date Received: 07/07/93

© Moisture: 52 decanted: (Y/N) N

Date Extracted: 07/12/93

Concentrated Extract Volume: 500.0 (uL)

Date Analyzed: 07/20/93

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

 \supseteq PC Cleanup: (Y/N) Y pH: 7.5

Number TICs found: 20

1	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	 Q
		UNKNOWN	4.53	1800	J
ļ	1.	UNKNOWN :	5.44	1700	J
!	2. 3. 12-14-12	Aldol Condensation Product	5.71	620	ABJN
_	<u> </u>	UNKNOWN	8.66	590	BJ
- !	4.	UNKNOWN	9.75	450	J
ļ	5.	UNKNOWN	9.80	800	BJ
ļ	6.	UNKNOWN	13.07	1300	вЈ
-!	7.	UNKNOWN	16.24	1300	BJ
!	8.	UNKNOWN HYDROCARBON	18.96	j 240	J
- !	9.	UNKNOWN HYDROCARBON	21.18	240	J j
_ !	10.	UNKNOWN HYDROCARBON	22.67	1000	ij i
1	11.	UNKNOWN PAH	25.41	i 350	ij i
- 1	12.	UNKNOWN PAH	25.60	450	J i
ļ	13.	· ·	25.73	410	ij i
.	14.	UNKNOWN UNKNOWN OXY. PAH	26.33	480	J
	15.	·	34.32	i 830	j j
-	16.	, —————————————————————————————————————	35.68	i 760	ij
- [17.	101111111111111111111111111111111111111	36.15	1100	J
_]	18.	, on the same and	37.37	i 760	J I
-	19.	UNKNOWN OXY. HYDROCARBON UNKNOWN HYDROCARBON	37.86	930	j i
ļ	20.	UNKNOWN HIDROCARBON		,	i i
			·	'	' '

TENTATIVELY IDENTIFIED COMPOUNDS

SED-5

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 431 SAS No.:

SDG No.: SED-1

Matrix: (noil, water) SOIL

Lab Sample ID: 67032

Sample wt vol: 30.0 (g/mL) G

Lab File ID: E4059

Level: (low.med) LOW

Date Received: 07/07/93

% Moisture: 51 decanted: (Y/N) N Date Extracted: 07/12/93

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 07/20/93

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y pH: 7.8

Number TICs tound: 20

SEMIVOLATILE ORGANICS ANALISIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SED-6

rab Name: E & E INC.

Contract:

⇒ab Code: EANDE

Case No.: 431

SAS No.:

SDG No.: SED-1

atrix: (noil/water) SOIL

Lab Sample ID: 67033

Lab File ID:

E4062

Sample wt vol:

30.0 (g/mL) G

Date Received: 07/07/93

evel: (low/med) LOW

" Moisture: 50 decanted: (Y/N) N

Date Extracted: 07/12/93

Date Analyzed: 07/20/93

_ioncentrated Extract Volume: 500.0 (uL)

Dilution Factor: 1.0

rnjection Volume:

2.0(uL)

GPC Cleanup: (Y/N) Y

7.7 pH:

lumber TICs found: 20

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CA	S NUMBER	COMPOUND NAME	RT ======	EST. CONC.	Q =====
==== 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	12-14-12	=====================================	4.60 5.51 5.78 8.69 9.86 11.19 13.08 16.26 19.06 19.61 20.25 21.18	3300 3700 1500 1800 3100 930 2600 2700 730 230 270 330	J J ABJN BJ J J J J J J J
12 13 14 15 16 17 18 19 20	•	UNKNOWN HYDROCARBON UNKNOWN HYDROCARBON & UNKNOW UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN HYDROCARBON	22.60 22.65 25.41 25.73 26.66 30.62 33.35 34.30	270 760 300 660 270 530 430 660	J J J J J J

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 431 SAS No.:

SDG No.: SED-1

Matrix: (soil/water) SOIL

Lab Sample ID:

67167

Sample wt vol: 30.0 (g/mL) G

Lab File ID:

E4157

Level: (low med) LOW

Date Received: 07/09/93

% Moisture: 55 decanted: (Y/N) N

Date Extracted: 07/14/93

Concentrated Extract Volume: 500.0 (uL)

Date Analyzed: 07/27/93

Injection Volume: 2.0(uL)

Dilution Factor:

1.0

GPC Cleanup: (Y/N) Y

pH: 7.2

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Number TICs found: 21

1		ъ.	EST. CONC.	Q	i
CAS NUMBER	COMPOUND NAME	RT	======================================	Q =====	i
=======================================	====================================	5.10	1500	J	
2. 12-14-12	Aldol Condensation Product	6.09	28000	ABJN	
•	UNKNOWN	7.74	1500	BJ	
] 3.	UNKNOWN	12.91	2900	BJ	
! 4.	IUNKNOWN	13.87	220	J	
5.	UNKNOWN	14.43	220	J	ļ
6.	IUNKNOWN	16.07	3400	BJ	ļ
1 7.	UNKNOWN	17.44	550	J	1
8.	LUNKNOWN	18.86	440	J	ļ
9.	UNKNOWN	20.08	630	J	ļ
1 10.	UNKNOWN	22.42	1000	J	ļ
1 11.	UNKNOWN	24.54	550	J	1
1 12.	UNKNOWN	25.53	660	J	ļ
13.	UNKNOWN	26.47	370	J	ļ
1 14.	UNKNOWN	27.31	480	J	1
15.	UNKNOWN	28.25	480	J	1
16.	UNKNOWN	28.93	1000	J	-
1 17.	IUNKNOWN	30.43	630	J	-
18.	UNKNOWN	31.83	630	J	1
19.	UNKNOWN	33.17	550	J	-
20.	UNKNOWN	34.42	850	J	
21.	Otavia	İ.	1		_

SED-8

ab Name: E & E INC.

Contract:

ab Code: EANDE

Case No.: 431

SAS No.:

SDG No.: SED-1

itrix: (soil/water) SOIL

Lab Sample ID: 67168

Lab File ID:

E4158

ample wt vol:

30.0 (g/mL) G

evel:

(low/mod) LOW Date Received:

07/09/93

Moisture:

7.3

decanted: (Y/N) N

Date Extracted: 07/14/93

oncentrated Extract Volume: 500.0

(uL)

07/27/93 Date Analyzed:

njection Volume: 2.0(uL)

Dilution Factor:

1.0

PC Cleanup: (Y/N) Y

7.8 pH:

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

umber TICs found: 20

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

ss-1

b Name: E & E INC.

Contract:

tb Code: EANDE Case No.: 431 SAS No.:

SDG No.: SED-1

trix: (soil/water) SOIL

Lab Sample ID: 67169

imple wt/vol: 30.0 (g/mL) G

Lab File ID: E4159

evel: (low/med) LOW

Date Received: 07/09/93

Moisture: 40 decanted: (Y/N) N Date Extracted: 07/14/93

oncentrated Extract Volume: 500.0 (uL)

Date Analyzed: 07/27/93

njection Volume: 2.0(uL)

umber TICs found:

Dilution Factor: 2.0

PC Cleanup: (Y/N) Y pH: 8.0

20

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	 Q =====
7	UNKNOWN	5.16	2100	រៃ រ៉
2. 12-34-22	Aldol Condensation Product	6.00	42000	ABJN
2. 12-54 22 3.	UNKNOWN	7.70	720	BJ
3. 4.	UNKNOWN	12.91	2200	BJ
5.	UNKNOWN	16.07	2100	BJ
	TRICHLOROBIPHENYL ISOMER	24.05	1100	J
6. 7.	TRICHLOROBIPHENYL ISOMER	24.58	1500	J
8.	TRICHLOROBIPHENYL ISOMER	24.83	3300	J
9.	TETRACHLOROBIPHENYL ISOMER	25.01	860	J
10.	UNKNOWN PAH	25.21	770	J
11.	TETRACHLOROBIPHENYL ISOMER	25.73	3600	J
12.	TETRACHLOROBIPHENYL ISOMER	25.81	2200	J
13.	TETRACHLOROBIPHENYL ISOMER	26.19	4400	J
14.	TETRACHLOROBIPHENYL ISOMER	26.44	1100	J
15.	TETRACHLOROBIPHENYL ISOMER	26.49	1400	J
16.	TETRACHLOROBIPHENYL ISOMER	27.11	940	J
17.	TETRACHLOROBIPHENYL ISOMER	27.66	1400	J
 ·-	PENTACHLOROBIPHENYL ISOMER	28.32	720	J
18.	PENTACHLOROBIPHENYL ISOMER	29.36	750	J
19. ; 20.	UNKNOWN PAH	35.42	860	IJ
				1

ib Name: E & E INC.

Contract:

Ab Code: EANDE Case No.: 431

SAS No.:

SDG No.: SED-1

itrix: (soil/water) SOIL

Lab Sample ID:

67170

ample wt ool:

30.0 (g/mL) G

Lab File ID: E4207

evel: (low/med) LOW

Date Received:

07/09/93

Moisture: 7 decanted: (Y/N) N

Date Extracted: 07/14/93

procentrated Extract Volume: 500.0

(uL)

07/29/93 Date Analyzed:

njection Volume: 2.0(uL)

Dilution Factor:

1.0

rPC Cleanup: (Y/N) Y

pH: 8.7

umber Ties tound: 20

umber Tirs coun				
	COMPOUND NAME	RT	EST. CONC.	Q =====
CAS NUMBER		7.65	610	J
	UNKNOWN	1 2 0 4	1400	J
1.		12.84	1800	J
$\overline{2}$.	UNKNOWN :	16.00	200	J
3.	UNKNOWN	18.79		J
-	UNKNOWN	20.00	290	
4.	UNKNOWN	22.34	340	J
j 5.	UNKNOWN	24.46	230	IJ
<u>6</u> .	UNKNOWN	25.47	410	J
7.	UNKNOWN	26.40	200	\J
8.	UNKNOWN	27.24	290	J
9 🗓	UNKNOWN	28.84	500	J
10.	INKNOMN		290	J
ī 11.		30.34	250	İĴ
12.	UNKNOWN	30.86	230	J
13.	UNKNOWN	31.75	340	J
. 1/	UNKNOWN	33.08		J
	UNKNOWN	34.02	250	r
15.	UNKNOWN HYDROCARBON	34.33	360	IJ
16.	ITNKNOWN	34.95	210	IJ
17.	UNKNOWN HYDROCARBON	35.30		J
18.	HINKNOWN PAH	36.71		J
19.	UNKNOWN HYDROCARBON	30.71		İ
20.	UNANOWN		_ \	
		•		
·				

SEMIVOLATILE ORGANICS ANALISIS DAIR TENTATIVELY IDENTIFIED COMPOUNDS

ss-3

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 431 SAS No.:

SDG No.: SED-1

Matrix: (noil/water) SOIL

Lab Sample ID: 67171

Sample wt rol: 30.0 (g/mL) G

Lab File ID: E4161

Date Received: 07/09/93

Level: (low/med) LOW

Date Extracted: 07/14/93

% Moisture: 6 decanted: (Y/N) N

Date Analyzed: 07/27/93

Injection Volume: 2.0(uL)

Concentrated Extract Volume: 500.0 (uL)

Dilution Factor:

GPC Cleanup: (Y/N) Y pH: 8.3

CONCENTRATION UNITS:

Number TICs found: 20

(ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
	Aldol Condensation Product	6.21	30000	ABJN
1. 12-11-22	IUNKNOWN	7.76	780	BJ
2.	IUNKNOWN	12.93	1700	J
3.	INKNOMN	16.09	1600	J
4.	IUNKNOWN	18.89	490	J
5.	UNKNOWN	22.43	250	J
6.	UNKNOWN	24.55	160	J
7.	UNKNOWN PAH	25.20	140.	J
8.	UNKNOWN PAH	25.38	250	J
9.	UNKNOWN	25.54	j 370	J
10.	UNKNOWN	27.33	180	J
11.	UNKNOWN	28.95	390	J
12.	UNKNOWN PAH	29.01	160	J
13.	UNKNOWN PAH	29.23	180	J
14.	UNKNOWN	33.18	250	J
15.	UNKNOWN	34.42	410	J
16.	UNKNOWN OXY. HYDROCARBON	35.38	, 740	J
17.	UNKNOWN HYDROCARBON	35.95	390	J
18.	UNKNOWN OXY. HYDROCARBON	36.14	940	J
19.	UNKNOWN HYDROCARBON	37.67	570	J
20.	Ottitionia in 1910 coming on			.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SBLKS1

ab Name: E & E INC.

Contract:

ab Code: EANDE Case No.: 431

SAS No.:

SDG No.: SED-1

atrix: (soil/water) SOIL

Lab Sample ID:

SBLKS 07-12

ample wt vol:

30.0 (g/mL) G

Lab File ID:

E4039

evel: (low/med) LOW

Date Received:

Moisturn:

Date Extracted: 07/12/93

oncentrated Extract Volume: 500.0

decanted: (Y/N) N

Date Analyzed: 07/19/93

njection Volume: 2.0(uL)

Dilution Factor:

PC Cleanup: (Y/N) Y

pH:

umber TICs found:

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
1. 2. 12-14-12 3. 4. 5. 6. 7.	====================================	5.55 5.75 6.16 8.66 9.76 13.06 16.23 22.84	83 850 83 550 150 300 120 130	J AJN J J J J

(uL)

SEMIVOLATILE UKGANICS ANALISIS DAIA TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 431 SAS No.: SDG No.: SED-1

Matrix: (noil/water) SOIL

Lab Sample ID: SBLKS_07-14

SBLKS2

Sample wt vol: 30.0 (g/mL) G

Lab File ID:

E4155

Level: (low/med) LOW

Date Received:

% Moisture:

decanted: (Y/N) N

Date Extracted: 07/14/93

Concentrated Extract Volume: 500.0 (uL)

Date Analyzed: 07/27/93

Injection Volume: 2.0(uL)

Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y pH:

Number TICs found:

CAS NUMBER	COMPOUND NAME	 RT ======	EST. CONC.	Q =====
1. 2. 12-14-22 3. 4. 5. 6. 7.	UNKNOWN Aldol Condensation Product UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN	5.43 6.19 7.74 12.90 16.06 21.41 34.79 40.21	2300 30000 800 420 250 66 100 120	J AJN J J J J J

DATA SUMMARY FORM: VOLATILES 1																	
Site Name:	Site Namer Salina Town Landfill WATER SAMPLES																
Job Number: 9302.780 Sampling Date(s): 11/30/93 (4g/L) To calculate sample quantitation limit: (CRQL • Dilution Factor)																	
	Sample Number: Dilution Factor:	L-3	3	Storage 1. (BIK	SW-		SW-		Top be	ank	VBLK	WΙ	VBLK			
CROL	Location: Compound	7.0)*. 0	<u> </u>	1.0	2			1.0		1.0	, 	1.0)	1.0 Matrix spike bh	· · · · ·
10	Chloromethane		<u> </u>		l				Ī							Spike ou	ank.
10	Bromomethane																
10	Vinyl chloride																
10	Chloroethane																
10	Methylene chloride	10	B	7	B	51	B	42	B	49	B	-51		13		42	B
10	Acetone	12	B			160								15		50	
10	Carbon disulfide					5	II			2	J					6	$ \mathcal{I} $
10	1,1-Dichloroethene		·					**-	<u> </u>		<u> </u>					50	
10	1,1-Dichloroethane		ļ		ļ						<u> </u>						
10	Total 1,2-Dichloroethene		<u> </u>					3	I		<u> </u>	<u> </u>	<u> </u>	ļ			
10	Chloroform										Ŀ					 _	Ш
10	1,2-Dichloroethane																Ш
10	2-Butanone		<u> </u>	<u> </u>				· .	UJ							ļ <u>.</u>	1
10	1,1,1-Trichloroethane		<u> </u>					5	I								
10	Carbon tetrachloride								UI			ļ <u> </u>					1
10	Bromodichloromethane				<u> </u>				LU			ļ	ļ			ļ	
					-							ļ		<u> </u>		ļ	-
				 	 		<u> </u>							 		ļ	
				ļ								<u> </u>	 	ļ		<u> </u>	\longmapsto
							$\vdash \vdash \vdash$					ļ				 	\sqcup
													_			 	╂—┤
																 	
			 —	<u> </u>	<u> </u>												
			<u> </u>	<u> </u>	<u></u>				<u> </u>				<u> </u>	<u> </u>			<u></u>

CRQL = Contract Required Quantitation Limit.

									- :						
			0 1 1		SUMM	IARY FORM	ME V	DLATILES 1	* · · · · · · · · · · · · · · · · · · ·					٠,	
Site Namer Job Numbe	Salina Town I rr 9302.780 Sampling Date(s)	Lana 11/30	193	-	-	WATER :	SAMPI _E /L)	LIES	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		т	o calculate :	ample qu CRQL •	uantitation i Dilution Fa	limit: actor)
	Sample Numbers	L-:	3	Storage	RIŁ	Sw-	11	SW-12	Triphlan	LIBI	Kw/l			_	
	Dilution Factors	1.0		7.0)	1.0		1.0	10	THE PARTY	.0	1,6	2	1.6	
	Locations			1					7.0	1	. V	 ''`		1.75	
CRQL	Compound														
10	1,2-Dichloropropune	,					<u> </u>	LU							
10	cis-1,3-Dichloropropene		 					UI			_	<u> </u>			_
10	Trichloroethene						<u> </u>	UJ	1					45	
10	Dibromochloromethane							LU			_			<u> </u>	
10	1,1,2-Trichloroethane							U.T							
10	Benzene	4	I					UJ						44	
10	urans-1,3-Dichloropropene					i	<u> </u>	UJ		<u> </u>		<u> </u>			
10	Bromoform							IJ							
10	4-Methyl-2-pentanone							UI			_ _	<u> </u>		31	<u> </u>
10	2-Hexanone							UJ							
10	Tetrachloroethene							UJ							
10	1,1,2,2-Tetrachloroethane							LU							
10	Toluens							IJŢ			_			45	_
10	Chlorobenzene	20						UJ						43	
10	Ethylbenzene							INI						· · · · · · · · · · · · · · · · · · ·	
10	Styrene							UJ				<u> </u>			<u> </u>
10	Total xylenes							ИJ							
												<u> </u>			

CRQL = Contract Required Quantitation Limit.

				DATA	SUMM	IARY FORM	& V O	LATIL	ES 1				-				
Site Name:	Salina Town	Lana	fi!	<u>[</u> .		WATER 9										*	
Job Numbe	r: 9302,780_ Sampling Date(» <u>11/30</u>	193	·		(ME	/L)		·				To	calculate so (C		uantitation Dilution F	
	Sample Number:			SW-12	MSD									Ī			
	Dilution Factor:	1.0		1.0	2												
CRQL	Location: Compound	Matrix Spik	ı	Matrix s duplic	spike ate												
10	Chloromethane																
10	Bromomethane								<u> </u>	<u> </u>				ļ			
10	Vinyl chloride																
10	Chloroethane			ļ					<u> </u>				<u> </u>				
10	Methylene chloride	46	B	45	β												
10	Acetone	86		94					<u> </u>				<u> </u>				
10	Carbon disulfide	3	J	9	I				ļ								
10	1,1-Dichloroethene	52		52										<u> </u>			
10	1,1-Dichloroethane	3	I	3	I												
10	Total 1,2-Dichloroethene	4	工	3	7				<u> </u>	ļ	ļ	<u></u>				ļ	↓
10	Chloroform								<u> </u>								
10	1,2-Dichloroethane			ļ					<u> </u>	<u> </u>	·				<u> </u>		↓
10	2-Butanone	59		200				· .	ļ								<u> </u>
10	1,1,1-Trichloroethane	- 4	J	4	I				-		<u> </u>						↓
10	Carbon tetrachloride										<u> </u>		ļ		ļ		
· 10	Bromodichloromethane							:	<u> </u>	<u> </u>	<u> </u>					ļ	↓
									<u> </u>		<u> </u>		ļ		<u> </u>		ļ
																	┦—
											<u> </u>						
											<u> </u>						1
	·																1
							<u></u>										
																	↓
														<u> </u>		<u> </u>	<u> </u>

CRQL = Contract Required Quantitation Limit.

			•													
			1	DATA	SUMM	ARY FORM	Ŀ VO	LATIL	ES 2						- '	
Site Name:	Salina Town 1	_andfi	11_			WATER S		ES				T -			santitation li	. ســـــ
Job Number	rs 9302. 780 Sampling Date(s): <u> 11/3</u> 0/	93			(AE)	L)					10			Dilution Fac	
	Sample Number:	SW-11	MS 51	W-111	1SD								-			
	Dilution Factor:	1.0		1,6)											
	Locations															
CRQL	Compound		_	T T												
10	1,2-Dichloropropene		_						<u> </u>	<u> </u>						\vdash
10	cis-1,3-Dichloropropene										 					-
10	Trichloroethene	45		40								 				Н
10	Dibromochloromethane											 	·			\vdash
10	1,1,2-Trichloroethane			-::-												\vdash
10	Benzene	45		46												<u> </u>
10	trans-1,3-Dichloropropene										 		<u>-</u>			
10	Bromoform		_						_		ļ	 				 -
10	4-Methyl-2-pentanone	27	_	34					 			 				 -
10	2-Hexanone		_									 				\vdash
10	Tetrachloroethene		_									 				-
10	1,1,2,2-Tetrachloroethane							• .	<u> </u>		-	 				
10	Toluene	45		47					 			 			•	H
10	Chlorobenzene	43		45					ļ		 					
10	Ethylbenzene										ļ	 				
10	Styrene										<u> </u>	 				
10	Total xylenes						-					 				-
											<u> </u>	<u> </u>				
											ļ	 -				├
							<u> </u>		L		_	 				₩
											 	 ļ	ļ			
											ļ	 				
											<u> </u>	 		<u> </u>		₩
				-				L			<u> </u>	<u>L</u>		<u> </u>	<u> </u>	<u> </u>

CRQL = Contract Required Quantitation Limit.

				DATA	SUMM	ARY FORM	& VO	LATIL	ES 2					-			
Site Name:	Salina Town L	andf	<u>ill</u> 93			SOIL SA						(CRQL	T • Diluti	o calculate san ion Factor) / ([iple qu 100 - %	antitation li moisture]/	mit: 190)
Job Number	s 9302.780 Sampling Date(s):	SED-		SFD-1	2	55-4		Ss-		VBLK.		VBLK	_	MSB		SED-12	
	Dilution Factors % Moistures	1.0		69	2	1.0 54	?	10	2 		0	- //-				69	
CRQL	Location: Compound							-			T			·			Γ-
10	1,2-Dichloropropane												<u> </u>	· ·			
10	cia-1,3-Dichloropropene													.46		120	
10	Trichloroethene		-														
10	Dibromochloromethane		_														<u> </u>
10	1,1,2-Trichloroethane		-											47		140	├
10 .	Penzene trans-1,3-Dichloropropene	·									<u> </u>						├-
10	Bromoform									·	ļ						╁
10	4-Methyl-2-pentanone										 						\vdash
10	2-Hexanone										<u> </u>						十
10	Tetrachloroethene								1 1	<u>.</u>		 					† -
10	1,1,2,2-Tetrachloroethane						-		├─-			 		52		160	
10	Toluene				<u> </u>						╁─	 		.50		130	
-10	Chlorobenzene								├		┼─	 					
10	Ethylbenzene		4 7						 	······	1						
10 -	Styrene								 		1						$oldsymbol{ol}}}}}}}}}}}}}}}}}}$
10	Total xylenes					<u> </u>			1		1						_
				 			-		1								_
			· .	 			 		1								+
		 				<u> </u>							1	ļ			4-
		 		 	 	1							 		<u> </u>	 	+-
		 		 	 						<u> </u>	<u> </u>			<u></u>	<u> </u>	

				DATA	SUM	MARY FORM	£ VO	LATIL	ES 1								
Site Name:	Salina Landf			_		SOIL SA		s .									
37	r: <u>9302.780</u> Sampling Date(193	-		(#E/	(kg)					(CRQL	T Diluti	o calculate a on Factor) /	([i00 - mbje d	uantitation % moisture	l imi t: [/100)
	Sample Number:	SED-	Ш	SED-1	2	Ss-4	/	SS-	5	VBLK	251	VBL	(52	MS	7B	SED-1	2MS
	Dilution Factor:	1.0		1.0		1,0)	1.0		1.0	2	1.0		1.	0	1.0	2
	% Moisture:	77	7	69		54			2			<u> </u>		-		69	
CRQL	Compound													Matrix spike	blank	Matin 5ph	X.
10	Chloromethane														Π		П
10	Bromomethane																
10	Vinyl chloride																
10	Chloroethane			·					<u> </u>								
10	Methylene chloride .	18	13	24	В	.33	B	16	B	6	丁	8	J	7	BJ	21	ВJ
10	Acetone	120	ļ	89		12	J				<u> </u>	<u> </u>				76	
10	Carbon disulfide										<u> </u>	<u> </u>					
10	1,1-Dichloroethene		<u> </u>					***************************************		ļ	<u> </u>	ļ	<u> </u>	52		130	
10	1,1-Dichloroethane								<u> </u>	ļ	ļ	ļ					
10	Total 1,2-Dichloroethene								ļ		<u> </u>	ļ	ļ				lacksquare
10	Chloroform									ļ	ļ		<u> </u>				
10	1,2-Dichloroethane								<u> </u>				<u> </u>				Ŀ
10	2-Butanone									ļ	ļ						├
10	1,1,1-Trichloroethane								<u> </u>		 						
10	Carbon tetrachloride			<u></u>					ļ	<u> </u>	 		<u> </u>	ļ			1
10	Bromodichloromethane			<u></u>					<u> </u>		ļ		 -				Ш
										ļ	 —	ļ. <u></u>	<u> </u>			,	\square
				ļ					 		ļ	ļ	ļ	<u> </u>			\vdash
			· -							<u> </u>			 			· · · · · · · · · · · · · · · · · · ·	1
										ļ			_				\sqsubseteq
N									-	ļ							
							. ,	·		 	 	ļ					
		· .								<u> </u>	<u> </u>	<u> </u>					لنيا

CRQL = Contract Required Quantitation Limit.

		,		DATA	SUM	ं MARY FORM	ı vo	LATILI	ES 1							-	
Site Name:	Salina Town L	andt	<u> </u>	.		SOIL SA		3					Te	calculate a	male a	uantitation l	limit:
Job Number	: <u>9302,780</u> Sampling Date(s): <u>11/30/</u>	93			V-0-			<u>.</u>			(CRQL •				% moisture]	
	Dilution Factor: % Moisture:	SED-17)						:								
CRQL	Compound	Matrix s duplic	ati														
10	Chloromethane						Γ										T
10	Bromomethane																
10	Vinyl chloride																
10	Chloroethane																
10	Methylene chloride	25	BJ														$oxed{oxed}$
10	Acetone	100							L				<u> </u>		ļ		<u> </u> !
10	Carbon disulfide												L				<u> </u>
10	1,1-Dichloroethene	150							<u> </u>		<u> </u>		<u> </u>		<u> </u>		
10	1,1-Dichloroethane													 	 	ļ	1
10	Total 1,2-Dichloroethene								<u> </u>		<u> </u>						
10	Chloroform			<u> </u>	<u> </u>					<u> </u>	<u> </u>	·	<u> </u>			ļ	╁┷┙
10	1,2-Dichloroethane	<u> </u>			ļ. <u></u>				ļ	ļ			 		—		╀┷┙
10	2-Butanone			· · · · · ·					 				 				—
10	1,1,1-Trichloroethane				-				<u> </u>					ļ	-	ļ	┼─-
- 10	Carbon tetrachloride	ļ			 				-				-			 	
10	Bromodichloromethane				ļ 				 							 	-
		<u> </u>		-					 				-				╁─┤
					 				<u> </u>	!			 	 	├	-	┼
					 		-		 		 			 	-		+-
					 	* -			 		-		 			 	+
,		<u> </u>					-		 	 				 		 	+-
-			\vdash		 		 							 	-		┼
					<u> </u>		<u> </u>	<u></u>	<u></u>					<u></u>	<u> </u>	<u></u>	

			 							······································							
					N SUM	MARY FOR	M: V	OLATII	ES	2							
Site Name:	Salina Town Lo	andfil				SOIL S		ES									:
Job Numbe	rs <u>9302.780</u> Sampling Date(s	» <u>11/30</u>	193			(4	g/kg)					(CRQI		To calculate action Factor) /			
	Sample Numbers	SED-12				1											
	Dilution Factor:	1.0															
	% Moisture:	69															
	Locations								•					İ		1	
CRQL	Compound					<u> </u>			r	<u> </u>			1	1			
10	1,2-Dichloropropane					<u> </u>		·	ļ			<u> </u>		· · · · · · · · · · · · · · · · · · ·	 		-
10	cis-1,3-Dichloropropene							·	 		ļ				ļ		
10	Trichloroethene	-130							<u> </u>	<u> </u>			 	<u> </u>		ļ	
10	Dibromochloromethane	<u> </u>									 		<u> </u>		<u> </u>		-
10	1,1,2-Trichloroethane								ļ	ļ			<u> </u>				\vdash
10	Renzene	160									ļ		ļ	ļ			
10	trans-1,3-Dichloropropene								ļ		 —		 				
10	Bromoform												<u> </u>		 	ļ	
10	4-Methyl-2-pentanone											<u> </u>	<u> </u>		ļ		├
10	2-Hexanone						·				<u> </u>				 -		
10	Tetrachloroethene										ļ		 	<u> </u>			
10	1,1,2,2-Tetrachloroethane									· · · · · · · · · · · · · · · · · · ·		ļ	ļ		<u> </u>		
10	Toluene	180											ļ			<u> </u>	
10	Chiorobenzene	150											ļ		<u> </u> -		<u> </u>
10	Ethylbenzene												<u> </u>		<u> </u>		
10	Styrene										<u> </u>		_				
10	Total xylenes												<u> </u>				
											<u></u>						<u> </u>
											<u> </u>		<u> </u>				<u> </u>
<u> </u>																	
	<u> </u>			-													<u> </u>
	l	<u> </u>															

				k () · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·			
-			DATA	SUMMARY FO	RM: BNAS	3 1								
Site Name:	Salina Town L	andfill		SOIL SAM	IPLES									
	r: <u>9302, 780</u> Sampling Date(s)		-	(µg/k									uantitation l	
Job Number	i		50. 461	1 4460	7 1		 		(CRQL	, • Dilu	tion Factor)	/ ((1 -	% moisture]/	/100)
	Sample Numbers Dilution Factors	55-5	SBLKSI	MSB					<u> </u>	-	 			
	% Moisture:	5.0	1.0	1.0			<u> </u>				 			
	Location:			Alabair.					ļ		 			
CRQL	Compound			Matrix Spike ble	nk									
330	Phenoi	UJ		1.000									,	
330	bis(2-Chloroethyl)ether													
330	2-Chlorophenol			1,000							<u> </u>			
330	1,3-Dichlorobenzene			1'							<u></u>			
330	1,4-Dichlorobenzene			720							<u> </u>	<u> </u>		_
330	1,2-Dichlorobenzene								<u> </u>					<u> </u>
330	2-Methylphenol													<u> </u>
330	2,2'-oxybis(1-chloropropane)				<u>. </u>									Щ
330	4-Methylphenol .							ļ						<u> </u>
330	N-Nitroso-di-n-propylamine			790	·									<u> </u>
330	Hexachloroethane							1	·	<u> </u>	<u> </u>			<u> </u>
330	Nitrobenzene					<u> </u>		<u> </u>	<u> </u>	ļ		<u> </u>		Ŀ
330	Isophorone							ļ						<u> </u>
330	2-Nitrophenol													<u> </u>
330	2,4-Dimethylphenol		ļ ļ						,					—
330	bis(2-Chloroethoxy)methane							<u> </u>		<u> </u>		ļ		<u> </u>
330	2,4-Dichlorophenol							<u> </u>	<u> </u>		<u> </u>			<u> </u>
330	1,2,4-Trichlorobenzene		-	800										<u> </u>
330	Naphthalene									<u> </u>	ļ			<u> </u>
330	4-Chloroaniline	₩								!		<u> </u>		
								<u> </u>		 				igspace
								<u> </u>						<u> </u>
										<u> </u>				٠.

CRQL = Contract Required Quantitation Limit.

<u> </u>				*	· · · · · · · · · · · · · · · · · · ·	·			
		1001		SUMMARY FORM	BNAS 2				
Site Names	Salina Town I	anatill		SOIL SAMPLE	S		т.		
Job Numbe	r: <u>9302.780</u> Sampling Date(s): <u>11/30/93</u>	<u> </u>	(µg/kg)				o calculate sample qu on Factor) / ([100 - 9	
	Sample Numbers	55- <i>5</i>	SBLKSI	MSB					. *
	Dilution Factor:	1.0	1.0	1.0				-	
	% Moleture:	10	_	_					
	Location:				·				
CRQL	Compound		<u> </u>			T T			
330	Hexachlorobutadiene	UJ	ļ						
330 .	4-Chloro-3-methylphenol			1,000					
330	2-Methylnaphthalene								
- 330	Hexachlorocyclopentadiene		 						
330	2,4,6-Trichlorophenol		 						
800	2,4,5-Trichlorophenol								
330	2-Chloronaphthalene								
800	2-Nitroaniline								
330	Dimethylphthalate		 						
330	Acenaphthylene								
330	2,6-Dinitrotoluene								
800	3-Nitroaniline			250					
330	Acenaphthene			850					
800	2,4-Dinitrophenol	 - -		1,200					
800	4-Nitrophenol			1,200			<u> </u>	 	
330	Dibenzofuran			760					
330	2,4-Dinitrotoluene	 		160					
330	Diethylphthalate								
330	4-Chlorophenyl-phenylether		 						
330	Fluorene 4-Nitroaniline								
800	4-Nitroaniline 4,6-Dinitro-2-methylphenol								
800	4,0-Dinido-2-memyiphator								
		<u> </u>		11					

CRQL = Contract Required Quantitation Limit.

				D	DATA S	SUMMARY	FORM	BNAS	3								
Site Name:	Salina Town	Land	d G			SOIL S											
	r: 9302,780 Sampling Date(s)			_		(42	/kg)			•		(CRQL	To Dilutio	o calculate so on Factor) /	unple q ([100 -	uantitation % moisture]	limit:]/100)
	Sample Numbers	SS-:		VBLK	SI	MSB											
	Dilution Factors	1,0) .	<i>J</i> . c)	1.0)										
	% Moistures	10) .														
CROL	Locations	*															
	Compound		1	<u> </u>								<u> </u>	,			<u> </u>	_
330	N-Nitrosodiphenylamine	•	UJ				<u> </u>		↓		 		<u> </u>		<u> </u>		↓_
330	4-Bromophenyl-phenylether		UJ						—	ļ	ļ		 				↓_
330	Hexachlorobenzene		UI	-		ļ	 		-	<u> </u>	 		 	<u> </u>	<u> </u>		╀-
800	Pentachlorophenol		UI			ļ	ļ		┼	· · · · · · · · · · · · · · · · · · ·	+	ļ	<u> </u>			-	┼
330	Phenanthrene	110	II			ļ			 		ļ		ļ	·	 		↓_
330	Anthracene		UI					·	ļ		-		ļ	<u> </u>	 		↓_
330	Carbazole		UT		· ·	ļ			—	· ·	ļ		ļ				╀
330	Di-n-buty/phthalate		UJ						 		<u> </u>		 	ļ			 _
330	Fluoranthene .	180	I						 		 		ļ				╀
330	Pyrene	180	J					• .	 		↓		<u> </u>		<u> </u>		╄
330	Butylbenzylphthalate		uI			<u> </u>			—		 		ļ	<u> </u>	ļ		4-
330	3,3'-Dichlorobenzidine	·	UI						 		 		├—	·			1
330	Benzo(a)anthracene	100	工			ļ			 				—				╄
330	Chrysene	150	J					,	 	ļ	ļ		├	<u> </u>	ļ		₩
330	bis(2-Ethylhexyl)phthalate	180	B	70	•				 	ļ	 	ļ	—		<u> </u>		╄
330	Di-n-octylphthalate	•	UI						 	ļ	 			<u> </u>	ļ	7	╀
330	Benzo(b)fluoranthene	190	J			ļ	<u>. </u>		 	ļ	↓	 	<u> </u>	ļ	ļ		↓_
330	Benzo(k)fluoranthene	68	I				<u> </u>		 		<u> </u>		ļ		ļ		╀
330	Benzo(a)pyrene	120	7						 		 		ļ	ļ	 		
330	Indeno(1,2,3-cd)pyrene	130	J			<u> </u>			 	 	ļ			<u> </u>			↓_
330	Dibenz(a,h)anthracene		UJ						<u> </u>		 _ _ 	<u> </u>	<u> </u>	ļ			
330	Benzo(g,h,i)perylene	120	I					·	ļ	,	<u> </u>		<u> </u>	ļ			1
															<u>L</u>		\perp

CRQL = Contract Required Quantitation Limit.

			TA SUMMARY	FORM: P	ESTIC	IDES AND	PCBS				
Site Name:	Salina Town L	andfill	_	WÁT	ER SAMP	LES					
Job Numbe	r: <u>9302.780</u> Sampling Date(s	ı <u>11/30/93</u>		•	(µg/L)				To calculate sample qu (CRQL *	uantitation lim Dilution Facto	
	Sample Numbers	L-3	SW-11	S	W-12	PBLKSI	SW-12 M	S SW-12M	SN MSB1		=
	Dilution Factors	1.0	1.0		1.0	1,0	1.0	1.0	1,0		_
CRQL	Location: Compound					•	Matrix spike	Matrix Spi aluplicas	ike Matrix Spike blank		
0.05	alpha-BHC		u	J	LU						=
0.05	betn-BHC										_
0.05	delta-BHC										_
0.05	gamma-BHC (Lindane)						0.36	0.34	0.37		_
0.05	Heptachlor						0.36	0.35	0.35		_
0.05	Aldrin						0.34	0.33	0.33		
0.05	Heptachlor epoxide										_
0.05	Endosulfan I										
0.10	Dieklrin						0.71	0.47	0.76		
0.10	4,4'-DDE										_
0.10	Endrin						0.70	0.45	0.83		_
0.10	Endosulfan II		LLL		L_L					· • · · · · · · · · · · · · · · · · · ·	
0.10	4,4'-DDD										
0.10	Endosulfan sulfate										
0.10	4,4'-DDT						0.77	0.77	1.8		
0.50	Methoxychlor										
0.10	Endrin ketone										-
0.10	Endrin aldehyde										_
0.05	alpha-Chlordane										
0.05	gamma-Chlordane										
5.0	Toxaphene		4		4						_

CRQL = Contract Required Quantitation Limit.

		DA'	TA SUMMAR	Y FORM	L PESTI	CIDI	ES ANI	D PC	BS (Conf	i.)						
Site Namer	Salina Town 1	and fi	<u>11 -</u>		WATER :	SAMPI	ES		*						-	
Job Numbe	er: <u>9302.780</u> Sampling Date(s): <u>11/30/</u>	93		(#E	/L)						To	calculate sa (C	mple q	uantitation Dilution Fa	limit: actor)
	Sample Number: Dilution Factor:	L-3 1.0	SW	-[[0	SW-1		PBLK 1.0	(ST)	SW-17	PMS O	SW-12 1.0	ZMSZ	MS			
CRQL	Location: Compound									V						
1.0	Aroclor-1016															T
2.0	Aroclor-1221															T
1.0	Aroclor-1232	2.5	T													
1.0	Aroclor-1242															
1.0	Aroclor-1248				0.47	J			0.93	J	0.54	I				
1.0	Aroclor-1254															
1.0	Aroclor-1260															
				1												
	!	<u> </u>					٠									↓
																<u> </u>
					ļ		.*			<u> </u>						<u> </u>
				-				 		ļ						
·					ļ			ļ							_	<u> </u>
				-	<u> </u>				ļ	<u> </u>						↓
		ļļ.			<u> </u>			 		<u> </u>				 		├ ─
			,					<u> </u>						ļ		—
		· .	· ·		<u> </u>			ļ	ļ							┼
				1				<u> </u>	<u> </u>							
				-				<u> </u>								
												ļ				ــــ
				1	<u> </u>				···							—
																↓_
																1
															. *	

CRQL = Contract Required Quantitation Limit.

w
1
\sim
\sim

			DA'TA	OT DOLLARY	÷												
Ska Name	Salina Town	100	a L).	PUKM	L PESTI			PC	BS (Con	t.)						
	rs 9302.780 Sampling Date(s	_				SOIL S.	AMPLI /kg)	28				(CPOL (I	o calculate a ion Factor) /	unple q	vantitation i	limit:
	Sample Number:	SED-	11	SED-		SED-12	DL	SS	-4	55-	5	PBLK	S/			SED-12	
	Dilution Factors % Moistures	<u> 1.0</u>		69		69		J. 1.		1.0		· /.4	0	1.	0	6	0
CRQL	Location: Compound					1 4				1	-	<u> </u>		(0.	/	6	7
33	Aroclor-1016						Ī				Γ		T		Γ=		
62	Aroclor-1221			İ													╁
33	Aroclor-1232																\vdash
33	Aroclor-1242								1								1
33	Aroclor-1248	770		7.100		7,700	Δ	680	J		1			8,600		9.100	,
33	Aroclor-1254	570	Н	3,100		7.700	D	280	J					3,800		4.000	
33	Aroclor-1260			<u> </u>													
	<u> </u>										<u> </u>						
	•												<u> </u>				
											<u> </u>		<u> </u>				
									<u> </u>		ļ						
							,				<u> </u>			ļ			Ш
														ļ			Ш
						ļ							<u> </u>	ļ			
				•							ļ			<u> </u>			\sqcup
								· ·			<u> </u>		ļ				Ш
			٠.														
							-						<u> </u>	ļ			Ш
			-			ļ					 		ļ				Ш
																	Ш
											 		<u> </u>				Ш
															\longrightarrow		Ш
											<u> </u>						

CRQL = Contract Required Quantitation Limit.

	Salina	1	DA -1 O	TA SUMM	ARY F	ORM: PE			AND	PCBS			: .				
Site Names Job Numbe	Salina Town on 9302.780 Sampling Date(<u>Lan</u> .): _11∫3:	a ti	_		SOIL S	AMPL /kg)	ES :			•	(CROL	T Diluti	o calculate : on Factor) /	ample	quantitation % moisture	limit:
CRQL	Sample Numbers Dilution Factors % Moistures	MSP 1.0 - Matrix spike b	32		-							;			4.55		
1.7	alpha-BHC beta-BHC																F
1.7	dekta-BHC gamma-BHC (Lindane)	16															
1.7	Neptachlor Aldrin	16															\vdash
1.7	Heptachlor epoxide Endosulfan I				,												\vdash
3.3	Dieldrin 4,4'-DDE	32															F
3.3	Endrin Endoeulfan II	32															\vdash
3.3	4,4'-DDD Endosulfan sulfate																
3.3	4,4'-DDT Methoxychlor	33		-													
3.3	Endrin ketone Endrin aldehyde																
1.7	alpha-Chlordane gamma-Chlordane																
1.7	Toxaphene																

CRQL = Contract Required Quantitation Limit.

		DATA S	UMMARY FORM	PESTICID	ES AND PO	BS (Cont.)			
Site Names	Salina Town	Landfill	-	SOIL SAMPLE	· ·				
Job Numbe	r: <u>9302,780</u> Sampling Date(s): <u>11/30/93</u>		(µg/kg)			To (CRQL • Dilutio	o calculate sample q on Factor) / ([100 -	uantitation limit: % moisture]/100)
	Sample Number: Dilution Factor: % Moisture:	MSB2 1.0							
CRQL	Location: Compound								
33	Aroclor-1016								
62	Aroclor-1221								
33	Aroclor-1232								
33	Aroclor-1242								
33	Aroclor-1248					<u> </u>			
33	Aroclor-1254		·						
33	Aroclor-1260			<u> </u>					
·				<u> </u>					
				ļl					
-									
				ļ					
		·							
 				ļ					
					 	 			
									
						 			
						 			
						 			
<u> </u>				 		 			
						 			
				l					<u> </u>

CRQL = Contract Required Quantitation Limit.

																	
Site Name	- Salina Town	1 Lar	ndfi	DAT]['a sun		ORM: 1	INORGA	NIC	8. _. .		·					
Job Numb	peri 9302.780 Sampling Date	(a): <u>11/3</u>	0/93				mg/kg)					Due to	dilutio	n, sample qu	ıantitati	ion limit is s	affected
	Sample Number:	55-	.5			T		T	***			T		See	dilution	table for s	pecific
	Dilution Factors	1.										1					
	% Solida:	89.	7								·					1	
CRQL	Location: Compound	İ									_						
40	Aluminum	3,410				1	T	+	7	+		+	-	+	-,		
12	Antimony						_	 	+-	+	+-	 -	+-			 	4_
2	Amenic	3,2				 	1		+-	 		- -	-		-	4	- -
40	Berium	66.2				<u> </u>	1	1	+	 	+-	+	┥		┽—	 	- -
1	Beryllium	0.23				<u> </u>	 	†	+	 	+-	┼			—	——	
1	Cadmium						1	1	╁╌	 	+-	 	┽—	 	┿	 	┷
1000	Calcium	211,000					╅┈┈	 	1—	 	┧—	 		 	-	 	
2	Chromium	13.9			<u> </u>		†	 	+-			 	-	 	—	 	
10	Cobalt	5.0					+-	 	├	 	+	 	-	 	╀	 	
5	Copper	21.2					 	 	╂	 	 	 					┸-
20	Iron	8.940					1-		-	 	┨		-		┼	 	╀
0.6	Lead	26.3					 	 		 	┼─	 -	┼	┼	┼	 	┵
1000	Magnesium	22,800				-	 	<u> </u>	┝┈	 	┼─	 		 	↓	 	
3	Manganese	254					-			 	╂	 -	 	┼	┼	 	╀
0.2	Mercury						-		 	 	┼─	<u> </u>	┼	 	┼		—
8	Nickel	12.7									├	ļ	 	 	—	 	╀
1000	Potassium	1					<u> </u>		<u> </u>	 	├		├-	 	 —	 	
1	Sclenium	0.35	-								-		-	 	 		
2	Silver	~ ~ ~									 	<u> </u>	 	 	 _		↓_
1000	Sodium		-		\dashv								 				ــــــ
2	Thallium				-+					<u> </u>			 	 _	 		
10	Vanadium	13.3			\dashv						<u> </u>		 		igwdap		
		62.9		 -	\dashv												
	Cyanide	~~			-									 			

CRQL = Contract Required Quantitation Limit.

VOLATILE UNGANICS ANABISIS TENTATIVELY IDENTIFIED COMPOUNDS

SED-11

Lab Name: E & E INC.

Contract:

Lab Code: EANDE Case No.: 780

SAS No.:

SDG No.: SS-5

Matrix: (soil/water) SOIL

Lab Sample ID: 76353

Sample wt/vol:

5.0 (g/mL) G

Lab File ID:

D9860

Date Received:

12/01/93

Level:

(low/med)

Date Analyzed: 12/06/93

% Moisture: not dec.

0.530 (mm) ID:

77

Dilution Factor:

GC Column: VOCOL Soil Extract Volume:

(uL)

Soil Aliquot Volume: (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Number TICs found:

1

RT EST. CONC. COMPOUND NAME CAS NUMBER 23.23 95 J BUTYLBENZENE ISOMER

3/90

Contract:

Lab Name: E & E INC.

SDG No.: SS-5 Lab Code: EANDE Case No.: 780 SAS No.:

76354 Lab Sample ID: Matrix: (soil/water) SOIL

D9861 Lab File ID: Sample wt/vol: 5.1 (g/mL) G

Date Received: 12/01/93 Level: (low/med) LOW

Date Analyzed: 12/06/93 % Moisture: not dec.

Dilution Factor: 1.0 ID: 0.530 (mm) GC Column: VOCOL

Soil Aliquot Volume: (uL) (uL)

Soil Extract Volume:

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Number TICs found:

EST. CONC. COMPOUND NAME CAS NUMBER 19 5.14 JN Hexane 1. 11-05-43

3/90

SED-12

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SS-5

Lab Name: E & E INC.

Contract:

Lab Code: EANDE

Case No.: 780

SAS No.:

SDG No.: SS-5

Matrix: (soil/water) SOIL

76356 Lab Sample ID:

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

E6500

Date Received:

12/01/93

Level: (low/med) LOW

% Moisture: 10

decanted: (Y/N) N

(uL)

Date Extracted: 12/16/93

Concentrated Extract Volume: 500.0

Date Analyzed:

01/04/94

Injection Volume: 2.0(uL)

Dilution Factor:

5.0

GPC Cleanup:

(Y/N) Y

5

8.6 pH:

Number TICs found:

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 3. 4.	UNKNOWN UNKNOWN UNKNOWN UNKNOWN UNKNOWN	3.13 4.21 5.09 7.49 7.57	870 12000 14000 920 520	J BJ BJ J BJ

B-83

APPENDIX C

COPIES OF PERTINENT RECORDS

Reference	<u>Page</u>
Grant 1987	C-5
Giacobbi 1985	C-9
Giacobbi 1986	C-26
Bentley 1992	C-29
Peck 1994	C-31
NYSDEC 1993	C-32
Kane 1994	C-33
Paratore 1993	C-34
Hupper 1989	C-36

New York State Department of Environmental Conservation

MEMORANDUM

TO: FROM: SUBJECT: Dolores Tuchy Oka

Old Salina Landfill Analytical Data

DATE:

October 19, 1987

The Old Salina Landfill, in Salina, New York has been the subject of several sampling efforts, and has been evaluated and ranked by NUS Corporation for the EPA. This memo will summarize the sampling results, and the information from the NUS report. Information from General Motors Corp. indicates that the company sent quantities of buffing sludge, paint sludge, and waste thinner and reducer to the landfill over the years, and there is information that suggests that unknown quantities of PCB contaminated wastes may also have gone there.

In DEC obtained 3 surface water samples and 2 soil samples from the landfill and had them analyzed for PCBs. The results for the water were negative, while the soil samples showed 3.6 and 1.4 ppm PCBs.

preparation for ranking the site according to the Hazard Ranking System (HRS) for EPA. During the site visit, NUS collected 5 surface soil samples from the fill area, 2 surface water and sediment samples from Ley Creek (upstream and downstream of the landfill), and a third surface water and sediment sample from an onsite drainage ditch. The sample locations are printed on the Sample Location Map attached, and the results are summarized in Tables 1 - 3.

While chemicals in ground and surface water often have standards or guidance values as published in the Division of Water TOGS document to compare them to, there are usually no set values for levels in soils. For guidance with metals I have included the common natural occurrence range for some metals, and the MAC c acceptable concentration for closure of landfarming operations from: EPA 1983, Hazardous Waste Land Treatment, SW 874 (revised).

The NUS report had several observations. The Old Salina Landfill is an unlined landfill, with a high water table, adjacent to wetlands and Ley Creek. It was reported to have been capped in 1972, and there is currently a gate across the access road, but no fence. No air releases were noted using organic vapor detectors. Pending of surface water on the landfill was observed, and leachate migrating to Ley Creek was

semi-volatile compounds were detected (compare these results with Table 1). A sample from 7 to 10 feet was analyzed for dibenzofurans (traces found) and for the hazardous substance list (Table 7). PCBs were observed at 270 ppm and low levels of several volatiles were found. Slightly higher levels of several semi-volatiles were observed in this sample compared to the sample from 5 to 7 feet. For the metals, I have added the common range and MAC values as explained earlier. Cadmium, chromium, mercury, nickel, and zinc all appear to exceed the range and/or MAC values.

At location SW-3, a soil sample from a depth of 2 to 4 feet was analyzed for pesticide/PCBs (none detected), and semi-volatiles (low levels observed). The sample is summarized as Table 10. A sample from 10 to 12 feet was analyzed for dibenzofurans (minute trace), and for the hazardous substance list (Table 11). PCBs were found at 4.9 ppm, and low levels of a few volatiles were found. Two phthalates were detected in excess of 20 ppm. Of the metals, cadmium, mercury, nickel, and zinc exceed the common range and/or MAC values.

Wells were not installed at locations SW-2 and SW-3, since the drilling encountered actual wastes. Thus, at least the deeper soil samples from the two borings are actually samples of this waste material, which according to Martin Brand appeared to be like a pudding or sludge-like material. He will forward boring logs to me shortly.

In summary, the 1987 data indicates low level contamination of soils and wastes by volatile and semi-volatile compounds. One particularly high PCB result (270 ppm) was noted. There are some high levels of several heavy metals, notably cadmium, mercury, nickel and zinc. More information needs to be developed for this site. With only one monitoring well installed, there is insufficient data concerning groundwater conditions. Additional borings and sampling are needed to categorize the extent and nature of contamination. If you have any questions concerning the analytical data, let me know and we can discuss it

Byrecuse Plant

New York State Department of Environmental Conservation RTK Processing Unit Room 525
50 Wolf Road
Albany, New York 12233

Dear Sirs:

In accordance with Governor Cuomo's "Community-Right-To-Know" Executive Order #33, General Motors Corporation, Syracuse Plant is submitting:

- Industrial Chemical Survey
- 2. Generator Questionnaire

to New York State Department of Environmental Conservation.

If you have any questions, Please contact the writer.

Very truly yours,

FISHER GUIDE DIVISION
General Motors Corporation

F. J. Giacobbi Plan Engineer

(315) 432-5207

cc: R. Link

L. Williams

J. Fannon

D. Skiven

P. Zavala

/emr

Enclosure

NYSDEC

"COMMUNITY-RIGHT-TO-KNOW" EXECUTIVE OFFER #33

ICS #: 0100359 GENERAL MOTORS CORPORATION

1000 TOWNLINE RD PO SYRACUSE NY 13221

INDUSTRIAL CHEMICAL SURVEY (ICS)

INSTRUCTIONS

A. If you have submitted an ICS form to the Department since January 1, 1980 (1), please check the box below, sign and return (2), this sheet.

X	ICS	submitted	since	January	1,	1930	
---	-----	-----------	-------	---------	----	------	--

X AMA

Signature

81985

Date

- B. If you have <u>not</u> submitted an ICS form to the Department since January 1, 1980, please complete and Ielun, (2) the attached ICS form.
- NOTE: (1) If you wish to update the ICS currently on file you may do so by completing and returning the enclosed forms.
 - (2) All materials are to be returned in the enclosed self-addressed envelope.

· FPA I. D. 002239440

SUBSTANCES OF CONCERN (Refer to attached TABLE 2)

I PRODUCED 2 REACTED 3 BLENDED

WE DESCRIPTIC 5 DISTRIBUTED

NO LONGER USE

7 CLEANING 8 OTHER SPECIF

Complete all information for those substances your facility has used, produced, stored, distributed or otherwise disposed of since January 1, 7971. Do no include chamicals used only in analytical laboratory work, Enter the name and code from Table 2, M Sacility uses a substance in any of the Classes A - f which is not specified in the list, enter it as code class plus 99, e.g. 399 with name, mage, etc.

NAME OF SUBSTANCE		COOK	AVELACE		AMOUNT NOW		7	Γ	PURPOSE OF USE
MALATHION			ANNUAL US	AGE	ON HAND	13	=	D	ITER THE APPROPRIATE COEIS) FROM ABOVE
DIAZINON		607	40		8	X	Γ	MOSQU	
YIE RON FACTS 73	0()	C13	- 6		0	X		FIST	CONTRUL *
17 4 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	961	C99	4		0	K		PEST	CONTRUIT
LION FRITTENERS		(99	<u>. 3</u>		C	K		TEST	CONTECT *
CA SAIL VINE CONSTR	56-18)	C441	20		C		X	ACA IN	I CONTPOS
CINENT (YESTERA 12	455-644	(94)	10		C		X	KCD-N	I CONTUX
YIENE (YYLO)		C99	0.5		0		X	RIVIN	CONTROL
		13.31	2671		4752	X		PAINT.	KEDILEFT
(1) (HIMITA) THE P(U	XT 17341	D491	4345		330	KI		FINT	THINN+V
-KIN		DAAI	47/1		4555	IXI	\neg	PRINTI IIA	
PATILITY	!	1 51	575		57	T	ΧI		MINNING SVSTE
三年以一一(井(小))。			135,000		11.000	M		BYONICE	THE (15TI)CE
IVESSO 150		HC31	1.15		EU.	11	X	YIJI LINZ	- LINES
THY ELAN KEINE		1441	12/25		220	iΥ:	i	PUINT ?	LNIP-1
		V321	.) پورٹ	i	441.	X:	1	+2157 7	ENGER
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		0441	14314		4462	χı	ī	A	-1)1/-+
		144!	47;	- 1	47)	IX:	1	PHINT T	+11111
71121		1)941	5			XI	Ť	メンル	THINN-P
- WILL HETTER	A.S. 111-15-	911	11:5	f	11:5	IXI	ī		K= DUC = 1/
						11	Ť		
			٠.			H	\top	,	
numb.	<u> </u>					П	十		
					·		7		
							7		
						T	1		
						I	1		
K THE NIMOUNTS	110			1		1	T		
	(()=0)	XY	= FINI	< m	ED THI)II	7	T. GIAR.	NTMIS
N	1/4 (1=1)	4/17	10/4 . 6		U KYI	NI	Y	15/D=	<u> </u>
11 = A	PPLIAX	176	! •]		الماليد ا	1		
use Chemicals of whenown composition	, list trace name	or other	identification	, Name	of supplier and o	000	ele	information.	
	AVERACE	j	11						PLEFOSE OF USE
NAME OF SUBSTANCE	ANNUAL USACE		OHAH	=	SUPP	UER			ENTER THE APPROP
			101	4			_		CODE ST FROM ABO
		 							
				+-					
				1-					
I hereby affirm under menalty of									
I hereby affirm under penalty of persister punishable as a Class A misdem	er inti intormatio	on provid Section	zed on this form	n is in	e to the best of	m) Li	0	redge and bein	el. false statements made he
URE (Owner, Parine: O: Office			(14)	· engl [
Printer or Typed)	5							DATE	11/0-
- ROIDAID	~ <i>1 11</i>	, , ,		TITLE	<i></i>				180
A (" & N/)	F. LIN	K			TJAN-	_	1	MANIAC	IP
recycled paper				12	4 - 4 - 1 - 4 - 1		_	logy and enviro	

U- HOX 4869	1000 TOWN	LINE !	ROAD	, 1
♥		STATE	1210	
(RACUSE		N.Y.		3221

DATE _6/20/8

TANTOUS WASTE DISPOSAL SITE	2. DESCRIPTION OF HAZARDOUS WASTES DEPOSITED AT THIS LOCATION	3. EPA WASTE	4 WASTE DISPOSED OF QUANTITY OF WASTE		OA		& WASTE	& TRANSPORTE
ed pape	(SEE INSTRUCTIONS)	CODE	(TONS)	2	9		DISPOSAL	HAZARDOUS W
Tantalo Landfill Saloman Rd. Seneca Falls, N.Y.	Paint Sludge & Kolene Sludge	D002	No Record		X	1	Cal. Year 1974	Onondaga Envir mental Systems 4439 James St. E. Syracuse, N
Tantalo Landfill Saloman Rd. Seneca Falls, N.Y.	raint Sludge & Kolene Sludge	D002	417 Tons	x	×	x	Cal. Year 1975	Onongaga Environmental Systems 4439 James St. E. Syracuse, N
Fantalo Landfill is aloman Rd. Seneca Falls, N.Y.	Paint Sludge & Kolenn Sludge 	D002	,1100 Tons		x	×	Cal. Year 1976	Onondaga Enviro
Fant: lo Landfill Falor in Rd. Fenec: Falls, N.Y.	Paint Sludge Kolene Sludge	D002	No Record		x	×	Cal. Year 1977	Onondaga Environmental Systems 4439 James St. E. Syracuse, N.
angalo Landfill aloman Rd. enega Falls, N.Y.	Paint Sludge Kolend Sludge	D002	No Record		x	x	1/78-6/78	Onondaga Enviro mental Systems 4439 James St. E. Syracuse, N.
ewad Chemical	Paint Sludge Kolene Sludge	D002	544 Tons		х		Cal. Year 1979	Onondaga Environmental Systems 4439 James St. E. Syracuse, N.1
ecos International 626 Royal Ave. Lagara Falls, N.Y.	Paint Sludge Folene Sludge	D002	168.99 Tons	1,	,	1	Cal. Year 1980	Onondaga Environmental Systems 4439 James St.

ARTHOUS WASTE DISPOSAL SITE	2. DESCRIPTION OF HAZARDOUS WASTEB DEPOSITED AT THIS LOCATION (SEE INSTRUCTIONS)	J. EPA WASTE CODE	4. WASTE DISPOSED OF QUANTITY OF WASTE (TONS)	F COCO	SOCO	DRUMS F	S. WASTE DISPOSAL DATES	A TRANSPORTER MAZARDOUS WA
Tran porter Owned Site	Indust ial Waste Treatm of Sludge	N/A	10,853		X	!	1962 Thru 1969	Joseph Brillo Coon Hill Road Skaneatales, R.
Smoral Rd. Landfill Fown of Onondaga Inondaga County Flew York	Industrial Waste Treatment Sludge	N/A	4,960		x		Jan. 1970 Mar. 1974	Mathieson Trash Service Pleasant Valley Marcellus, N.Y.
Fantalo Landfill "" Falesman Rd. Feneca Falls, N.Y.	Industrial Waste Treatment Sludge	N/A	448	·	x		Mar. 1974 June 1978	Onondaga Enviro mental 4439 James St. E. Syracuse, N.
lewco Chemical laste Systems liagara Falls, N.Y.	Industrial Waste Treatment Sludge	N/A	336		x		June 1978 Dec. 1981	Onondaga Environmental 4439 James St. E. Syracuse, H.
C-19	•					·		
men.						+		
					+	+		

BOX 4869	1000	TOWN	LINE	ROAD	
ACUSE		الا الله	STATE N.Y.	2	بر 13221

DATE 6/20/85

0			en en en en en en en en en en en en en e					DATE
ARDOUS WASTE DISPOSAL SITE	2. DESCRIPTION OF HAZARDOUS WASTES DEPOSITED AT THIS LOCATION (SEE INSTRUCTIONS)	3. EPA WABTE COOE	4. WASTE DISPOSED OF QUANTITY OF WASTE (TONS)	Liborib 34	SOLD	DRUMS F	S. WASTE DISPOSAL DATES	A TRANSPORTER OF HAZARDOUS WAST (BEE INSTRUCTION
n site Landfill	Paf t Sludge	D002	No Repord		x	T 	Oct. 1952 Dec. 1961	N/A
own of Salina Landfill oute 11 own of Salina nondaga County	Pai & Sludge	D002	540		X	x	Jan. 1962 Dec. 1967	Refuse Div. Contract Trucking Corp.
cansporter's indfill	Paint Sludge	D002	120		X	×	Jan. 1968 Feb. 1969	J. Brillo Co. Coon Hill Rd. Skaneateles, N.Y.
own of Salina Landfill oute 11 own of Salina ondaga County	Paint Sludge	D002	100		x	K	Mar. 1969 Dec. 1969	J. Brillo Co. Coon Hill Rd. Skaneateles, N.Y.
erschfelter Landfill wnapf Onondaga ondaga County	Pair* Sludge	D002	480	,	c		Jan. 1970 Dec. 1973	Mathieson Trash Service- Pleasant Valley Rd., Marcellus. N.Y.
NOME NOME								
						1		

OF BOX 4869. 1000 TOWN LINE ROPD

(RACUSE STATE N.Y. 13221

DATE _6/20/85

AZARDOUS WASTE DISPOSAL SITE	2. DESCRIPTION OF HAZARDOUS WASTES DEPOSITED AT THIS LOCATION (SEE INSTRUCTIONS)	J. EPA WASTE CODE	4. WASTE DISPOSED OF QUANTITY OF WASTE (TONS)	FC ONCH	SOCIO	8. WASTE DISPOSAL DATES	6. TRANSPORTER O HAZARDOUS WAS (BEE INSTRUCTION
Cecos International P.O. Box 619 Niagara Falls Blvd. Niagara Falls, N.Y.	PCB's	B001	.0704 Tons	x		Calendar Year 1980	Cecos International
Cecos International P.O. Box 619 Niagara Falls Blvd. Niagara Falls, N.Y.	₁PCB¹s	B001	None			Calendar Year 1981	Cecos International
Cecos International P.O. Box 619 Niagara Falls Blvd. Niagara Falls, N.Y.	PCB s	B001	None			Calendar Year 1978	Cecos International
Cecos International P.O. Box 619 Niagara Falls Blvd. Niagara Falls, N.Y.	PCB's	воо1	None			Calendar Year 1979	Cecos Internationa
colegy (12/2) viror	•					1952 - 1977	No written records available
	•						

SHER GUIDI' IV., 64C PA GUEZ TOUR LINE ROAD

RACUSE

STATE

N.Y. 13221

DATE _6/20/05_

ZARBOUS WASTE DISPOSAL SITE EDIFE MSTRUCTIONS)	2. DESCRIPTION OF HAZARDOUS WASTES DEPOSITED AT THIS LOCATION (SEE INSTRUCTIONS)	3. EPA WABTE CODE	4. WABTE DIBPOSED OF QUANTITY OF WASTE (TONS)	Light	Sol B	DRUKS_	S. WASTE DISPOSAL DATES	4 TRANSPORTER HAZARDOUS WA (BEE INSTRUCTION	
On site Landfill	Combination of boiler fly ash and bottom ash	N/A	No written records avail-able.		x		Арргож. 1952 - 1961	Self Self	
On site fill & cover	Combination of boiler fly ash and bottom ash	N/A	/A No written records available		x		Approx. 1962 - 1970	Self	
Town of Salina Landfill Route 11 Town of Salina Onondaga County	Combination of boiler fly ash and bottom ash	н/л	10,092 т		x		Jan. 1971 Mar. 1974	Mathieson Tras Service Pleasant Valle Marcellus, N.Y	
Onondaga Environmental Landfill Owl Road Cicero, N.Y.	Combination of boiler fly ash and bottom ash	N/A	21,278 Т		x		Mar. 1974 Aug. 1978	Onondaga Envir mental Systems 4439 James St E. Syracuse,	
Omondaga Landfill Systems Shoral Road Syracuse, N.Y.	Combination of boiler fly ash and bottom ash	N/A	1,312 т		X		Aug. 1978 Apr. 1979		
Sealand Restoration Town of Lisbon St. Lawrence County	Combination of boiler fly ash and bottom ash	N/A	329 Т		x		Apr. 1979 June 1979		
Onondaga Landfill	Combination of boiler fly ash	N/A	5,151 T		×			Onondaga Environmental Systems 4439 James St.	

R GUIDE TO	/., GH	С	EPA 00	en - era 10 milliosa 22 19440
BOX 4869	1000	TOWN	LINE RO	OAO
USE		سينقب	STATE N.Y.	13221

DATE 6/20/85

NOTE WASTE DISPOSAL SITE	2. DESCRIPTION OF HAZARDOUS WASTES DEPOSITED AT THIS LOCATION (SEE INSTRUCTIONS)	J. EPA WASTE CODE	4. WASTE DISPOSED OF QUANTITY OF WASTE (TONS)	FOOOI	RM Q OS	CACA	S. WASTE DISPOSAL DATES	8. TRANSPORTER OF HAZARDOUS WASTE (SEE INSTRUCTIONS)
Site ndfill	lating Waste	n/a	Unkcown		x		λpprox. 1952-1961	Self .
n Lite andfill	Plating Waste	n/a	Est. 10 cu. yd. per yr.	x	x	x	1952 Approx. 1962	Self
C-25		·		-				
ecology								
y and environmen								
E: On site landfill ered by 6 to 8 feet of y. Material excavated m the site during 1964								
struction.								

2. Who handled our general trash?

Answer: Our general trash was transported to the Onondaga County Solid Waste Authority by A & T Haulers since 1979 according to existing records (Attachment B1). Internal correspondence (Attachment B2) dated May 19, 1971, indicates that Leaseway Haulers, Inc. was responsible for general trash consisting of garbage, cardboard, all scrap plastic, and floor dry. This material was taken to the Town of Salina Dump by permit. The following industrial trash haulers handled our general trash during the indicated time periods: Leaseway Haulers, 1/1/73 through 5/31/73; A & T Haulers, 6/1/73 through 5/31/74; and Matthieson Trash Service, 1/1/73 through 12/31/73 (Attachment B3). In our letter to Mr. Larry Gross, NYDEC, dated March 31, 1976, A & T Haulers is again identified as our general trash hauler for 1975 (Attachment B4).

3. Provide copies of Annual Generator Reports 1982 through 1985.

Answer: Reports are attached (Attachments C1 through C4).

4. Provide Fly Ash Analysis.

Answer: Attachment D is a recent analysis report for fly ash and should be considered typical.

5. Provide Paint Sludge Analysis.

Answer: Attachment E is a recent analysis report for paint sludge and should be considered typical of Paint Room non-PCB sludge.

6. Provide Industrial Waste Treatment Sludge Analysis.

Answer: Attachments F1 and F2 represent this sludge for the dates indicated on the reports.

7. PCB Analysis for Hydraulic Oil.

Answer: Hydraulic oil from molders tested 12/79 shows a low of 40 P.P.M., average at 148 P.P.M. and a high of 234 P.P.M. Attachments GI through G3 document these figures. We are currently at less than 20 P.P.M. in all reservoirs and have been for over two years.

8. Calculate or estimate mass flow PCB from 1979 through 1983 that left our plant.

Answer: We know of no other way of improving upon the estimates indicated in the EPA complaint which estimated that 87,000 kg of contaminated trash went to our local landfills from 1979 to mid-1983. Based on this figure, we calculate that 10 lbs. to 30 lbs. maximum of of PCBs were sent.

Please do not hesitate to call if you have any questions.

Very truly yours,

F. J. Giacobbi Plant Engineer (315) 432-5207

/dr

Attachments

cc: R. Link

General Motors Corporation Legal Staff

Facsimile

Telephone

313-974-7770

313-974-1963

EXPRESS MAIL

July 17, 1992

Mr. Chad Eich
Ecology and Environment Engineering, P.C.
Buffalo Corporate Center
368 Pleasantview Drive
Lancaster. New York 14086

Dear Mr. Eich:

RE: Buffing Sludge and Fly Ash Process Generation and Composition

Pursuant to your letter of June 26, 1992, I contacted our Inland Fisher Guide plant in Syracuse, New York. Buffing sludge was generated as follows:

- 1. Until 1973, an activity at the plant was the fabrication of wheel discs and hubcaps. After the discs and hubcaps were formed in the press line and heat treated as required, they were buffed using cloth buffing wheels. A buffing compound was used during the process. The sludge was formed from the excess buffing compound which built up on and under the buffing units. The buffing wheels were made of cloth and as they wore down, the fibers became part of the sludge. In addition, some automatic buffing units had water wash centerspray units which scrubbed the exhaust air. Periodically, the water was drained and the remaining sludge was disposed of as buffing sludge.
- 2. Until 1971-72, the plant had a die casting process. As with the wheel disc line, these parts were buffed in a similar manner and sludge generated.
- 3. For approximately 2 years around 1959, an extruding process was used for aluminum moldings which were also buffed creating a sludge.

No records have been found which note the types or makeup of the buffing compounds. Wheel discs and hubcaps were made of stainless steel, steel and brass. Zinc was used in the die casting process.

-colors and onviruament.

Mr. Chad Eich July 17, 1992 Page 2

Fly ash was generated at the Powerhouse from the combustion of coal in boilers used to produce steam. Analysis reports from the relevant time for the Salina Town Landfill and Brighton Landfill no longer exist. Attached is an analysis report from 1986 which should be considered typical.

If I can be of any further assistance, please contact me.

Very truly yours,

Linda L. Bentley Legal Assistant

enclosure

c: D. A. Schiemann, Esq.

W. Kochem

TELEPHONE LOG

1/31/94 1055 AM

To Bob Ventre (315) 478-2839 From Dennis Beck

Mr. Ventre is the Town of Salina attorney and was involved with the landfill for the Town in the 705 and 805. David Utt (Town of Salina Supervisor) suggested I call Mr. Ventre.

Mr. Ventre stated that East Playa Ivc. owned the site during the time of landfilling and leased the land to the Town. The Town purchased the land (29 acres) In sometime between 1978-82. There was litigation at the time in East Playa. The attorneys recommended the Town luy the site so they wouldn't have to deal in East Play. Mr. Ventre believes the Town purchased all of the land that was filled.

WRITTEN CONFIRMATION OF VERBAL COMMUNICATION
Project: Tour OF SALING LANDERS Date: 12 100 AM
☐ Telephone ☐ Meeting ☐ Meeting
From: ALYSE PICKHOUTZ CEDY C. WYSTECD - Location: 1907
TO: JACK DALEY ONONDOGS COUNTY ENGINEER Attendees:
Telephone Number: (315) 435 - TIGO HAZARDOUS SITE CONTROL DIVISION OF HAZARDOUS
RE: STATUS OF ABANDONED LEY CREEK TRUNK SEWER
MR. DALEY STATED THAT WHEN THE SEWER WAS ARANDONED, ALL
OF THE MANHOLES ON THE SALINA TOWN LANDFILL SITE WERE
FILLED IN WITH LIMESTONE, AND THEIR COVER REMOVED.
THE ONLY EXCEPTION TO THIS IS MIT 9, WHICH IS ON NOW
PART OF THE NEW SEWER LINE. THE LEY CREEK TRUNK
JEWER IS BULKHEADED ON BOTH THE EASTERN AND
WESTERN ENDS OF THE SITE. THOUGH BULKHEADED AT
BOTH ENDS, IT IS STILL POSSIBLE THAT CONTAMINANTS MAY
MIGRATE ALONG THE BEDDING OF THE SEWER LINE.
Des NH the sun see was fulkhearles
m the area of NI #9 the new ACTS pass through
old LCT Cet this junction both ends of the LCTS
was buttshead off
The ald mattered sever was directed into the new
LCTS near the NYS Therway, I he MH of the molling
IS from the deversion to the old LCTS was bulkhers
and filled with limeston
Signature Jack Laly Construction Supervisor
Page of

· · · · · · · · · · · · · · · · · · ·		· ·	~ .				
75		1 Ed	E PHON	VE LOG	1 -		
	3/1/94	and the second second second second second second				and the second of the second s	
	1045 AM			. "			
and the second s					The second secon		•••
	To: Leo Ka From: Dennis!	(315) 451-	67//	/ '		<u> </u>	
	To: Les Ka	ne Cal	ocernos	+ Spina	_ Engine	4 00	
	From: Dennis!	Peck					
	Ma Kama	was the	manaa	ana ina	ineen las	the corer	in
	Mr. Kane and grading him to discu	14/	1 -		11.11	Tak	
· 	and grading	of the sa	una lo	wh cano	- 1.	1. 1 carl	io
	_ him to discu	is the l	ackgrou	ind of the	e Sakira Si	te and hu	U
	senowledge o	f what a	reas we	re filled	or and c	iovered.	
	He said man	ston all a	I his o	ecords.	had been	archived	,
	but from so the 50 ac	him mem	rory li	Le heli	eved that	most of	/
	the same	on Atta		Dilla A	including	the par	
	Me 30 ac	11 1	raa Nel	In fille	writing.	ma pour	
3	now owner	d My Joh	n taral	ove.	<u></u>		
Ab							 .
• V • · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					
						. 8+	
				1			
	and the state of t	and the second s					
		2 *		• •			

INTERVIEW ACKNOWLEDGHENT FORM

SITE NAME:

Salina Town Landfill

SITE I.D. NUMBER: 734036

DATE: July 14, 1993

PERSON CONTACTED:

Mr. John Paratore

PHONE NUMBER: (315)455-5551

AFFILIATION:

Property owner.

Paratore Signs

ADDRESS:

1551 Brewertown RD

Syracuse, New York 13208

CONTACT

Jim Richert J. R PERSON:

TYPE QF

CONTACT:

Telephone

INTERVIEW SUMMARY

Mr. Paratore introduced himself to NYSDEC, E & E, and Joseph Lu personnel at the Salina Town Landfill on Wednesday. July 7, 1993, and provided much information about the site and its history. Mr. Paratore agreed to be interviewed by E & E at a later time.

On Monday, July 12, 1993, Jim Richert of E & E. phoned Mr. Paratore to confirm the following information which was learned on July 7:

- Mr. Paratore owns two parcels of land adjacent to, and possibly part of, the Salina Town Landfill. The Parcels numbers are 73-1-03 and 73-1-10.3 and are <1.0 and 14.92 acres each, respectively. Mr. Paratore purchased both parcels of land in October of 1985 from East Plaza Inc., of which a Mr. Joseph Basil of Basil Construction Company, is or was a partner.
- The same East Plaza Inc. also leased the land that is now the town landfill to the Town of Salina before selling it to the town in the late 1970's.
- o An abandoned sanitary sever line exists under the landfill in the approximate center of the landfill and is oriented in an east/west direction. This sewer line is owned by the

County of Onondaga and has been replaced by a line which runs along the east side of the landfill northward to the south shoulder of I-90 where it ties into another line which parallels this Thruway.

- The Town of Mattydale (north of the site) also has an abandoned sanitary sewer line which runs from north to south and ties into the old east/west county line. The Mattydale line was installed. at least in part, across Mr. Paratore's land without permission from or notification to Mr. Paratore. Presently, the Mattydale sewer line runs from the north, under the Thruway, and ties into the same east/west county line along the south side of the Thruway. During the abandonment of the Mattydale sewer line segment soil fill was brought to the right-of-way from Factory Ave. and used for cover material. Some soils from Factory Ave. were found to contain hazardous industrial waste from studies unrelated to this site. Some of the soil cover was placed on Mr. Paratore's land, again without his permission. The contractor who performed the sewer line abandonment for the Town of Mattydale was named Memphis Construction.
- o Previous investigations have been performed at the landfill and Mr. Paratore has photocopies of some of this data as well as maps of sewer lines and logs of soil borings and wells of which E & E requests copies.

ACKNOVLEDGHENT

I have read the above transcript and I agree that it is an accurate summary of information verbally conveyed to Ecology and Environment, Inc.'s interviewer, Jim Richert, as revised below, if necessary.

REVISIONS (please line-out and initial any incorrect information in the above transcript and write in the lines below any additional information that may have been left out of the transcript.

Signature:

Date:

CTF: YR-3000

LAW DEPARTMENRECE!VED

100 CHURCH STREET NEW YORK, N.Y. 10007 989 PO NUL

Room 6 D 16
PETER L. ZIMROTH
Corporation Counsel

NYSDEC WHITE PLAINS D.E.E. (212) 566- 0746

May 30, 1989

LOVEVILLS

David Markell, Esq.
Director of Enforcement
New York State Department of
Environmental Conservation
50 Wolf Road
Albany, NY 12233

Re: Hazardous waste site near Town of Salina

Dear Mr. Markell:

In the course of this office's discovery of Carrier Corporation in City of New York v. Exxon Corporation, et. al., we found very strong evidence that drummed waste from Carrier's Thompson Road plant in Syracuse was dumped from 1974 to 1979 in a Indfill in the Town of Salina. I enclose affidavits to this effect of Joseph and John Peta, who ran a trucking company in the 1970's. The affidavits were drafted by counsel for Carrier for use in Exxon. I interviewed the Petas in person and firmly believe the affidavits to be true. Pickup slips indicate that the Petas picked up about 100,000 gallons of drummed waste.

The Petas did not know what substances were in the drums, but at least some of it was hazardous. Carrier documents and the deposition testimony of Nicholas Chudyk, Carrier's environmental engineer, suggest that the drums contained methylethylketone, engineer, suggest that the drums contained methylethylketone, toluene, xylene, and solder flux, among many other substances. I toluene, xylene, and solder flux, among many other substances. I enclose for the sake of illustration a Carrier description of liquid enclose for the sake of illustration a Carrier description of liquid waste anticipated for 1978, used to bid its waste disposal contract. See items 3-6 of pages 103262-63 for a summary of anticipated drummed waste.

Please do not hesitate to call me if you have any questions.

RECEIVED

JUN 2 1989

DIVISION OF ENVIRONMENT AL ENFORCEMENT CENTRAL OFFICE

cc: Lorna Goodman

Sincerely,

John R. Hupper, Jr. Assistant Corporation Counsel Affirmative Litigation Division CARRIER CORPORATION
CARRIER PARKWAY
SYRACUSE, NEW YORK 13221

SPECIFICATIONS

FOR THE

REMOVAL AND DISPOSAL

OF

INDUSTRIAL LIQUID WASTE

DATE

FEBRUARY 10, 1978

PREPARED BY:

NICHOLAS CHUDYK
ENVIRONMENTAL CONTROL ENGINEER
FACILITIES SERVICES DEPARTMENT
ADMINISTRATION

N 10325

ecology and environment

GENERAL INTENT 1.00

- THE GENERAL INTENT OF THIS CONTRACT IS TO PROVIDE SER-VICES TO PICK UP AND DISPOSE OF SPENT CHEMICALS AND 1.01 OTHER INDUSTRIAL LIQUID WASTES AS INDICATED ON THE AT-TACHED INVENTORY LIST.
- A DESCRIPTION OF WASTES GENERATED AT THE CARLYLE COM-PRESSOR PLANT ON CHRYSLER DRIVE (AS PER THE INVENTORY LIST) IS FOR THE BIDDER'S USE TO INCLUDE THE COST TO REMOVE AND DISPOSE OF SUCH WASTES IN ADDITION TO THE REMOVAL OF WASTES FROM THOMPSON ROAD SITE PLANTS.
- TWO (2) SEPARATE PURCHASE ORDERS WILL BE ISSUED, ONE (1) FOR THE THOMPSON ROAD FACILITIES AND ONE (1) FOR THE CHRYSLER DRIVE FACILITIES, WHICH WILL BE ISSUED BY THE CARLYLE COMPRESSOR COMPANY PURCHASING DEPARTMENT. 1.03

LOCATION OF WORK 2.00

- 2.01 THE WORK UNDER THESE SPECIFICATIONS WILL TAKE PLACE AT THE CARRIER CORPORATION'S THOMPSON ROAD SITE AND AT THE CHRYSLER DRIVE SITE.
- INDUSTRIAL LIQUID WASTES WILL BE PICKED UP AT VARIOUS POINTS AT THESE TWO (2) SITE LOCATIONS AS INDICATED ON 2.02 THE ATTACHED SITE PLAN.

CONTRACT TERMS 3.00

- THE CONTRACT WILL BE EFFECTIVE FOR A TWELVE (12) MONTH PERIOD BEGINNING ON APRIL 1, 1978 AND TERMINATING ON 3.01 MARCH 31, 1979.
- CARRIER PURCHASE ORDERS SHALL BE USED IN CONJUNCTION WITH THESE SPECIFICATIONS AND THE INSTRUCTIONS TO BID-3.02 DERS AS THE AGREEMENT BETWEEN THE OWNER AND THE CON-TRACTOR INVOLVED.
- THE OWNER RESERVES THE RIGHT TO ACCEPT ANY PROPOSAL OR REJECT ALL PROPOSALS OR PART OF ANY PROPOSAL OR TO AWARD THE WORK TO OTHER THAN THE LOWEST BIDDER AS SERVES THE 3.03 BEST INTERESTS OF THE OWNER.
- THE OWNER RESERVES THE RIGHT TO TERMINATE THE CONTRACT IF SERVICE IS UNSATISFACTORY. 3.04
- A COPY OF FORM 47-06-1, "SEPTIC TANK CLEANER AND INDUS-TRIAL WASTE COLLECTOR CERTIFICATE OF REGISTRATION", AP-PROVED BY THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL 3.05 CONSERVATION, WILL BE PROVIDED TO THE OWNER BY THE CON-TRACTOR AT THE TIME QUOTATION IS SUBMITTED. THIS CERTI-FICATE WILL SHOW THE KINDS OF WASTES REMOVED FROM CARRIER AND WILL BE VALID FOR THE PERIOD COVERED BY THE CONTRACT.

MATERIALS TO BE REMOVED AND DISPOSED OF: 4.00

- SPENT ACIDS AND ALKALIS, MIXED. 4.01
 - APPROXIMATELY 150,000 GALLONS PER YEAR FROM UNDER-GROUND PITS AT TWO (2) LOCATIONS.
 - WATER SOLUBLE COOLANT 4.02
 - APPROXIMATELY 400,000 GALLONS PER YEAR FROM AN UNDER-GROUND PIT.
 - FLAMMABLE SOLVENTS AND THINNERS 4.03
 - APPROXIMATELY 500 GALLONS PER YEAR OF MIXED HYDRO-CARBON SOLVENTS IN DRUMS FROM THE DRUM STORAGE AND DISPOSAL POINT.
 - SOLVENT BASE ALKYD AND ACRYLIC PAINT 4.04
 - APPROXIMATELY 1,000 GALLONS PER YEAR OF RAW ENAMEL BAKE TYPE PAINT WITH SOLVENTS, THINNERS AND DILUENTS IN DRUMS FROM THE DRUM STORAGE AND DISPOSAL POINT.
 - SOLDER FLUX 4.05
- APPROXIMATELY 1,000 GALLONS PER YEAR OF REACTION SOLDERING FLUX (CHLORIDES) IN DRUMS FROM THE DRUM STORAGE AND DISPOSAL POINT.
 - LIQUID SLUDGES, MISCELLANEOUS 4.06
 - APPROXIMATELY 24,000 GALLONS PER YEAR OF CHEMICAL SLUDGES IN OPEN END DRUMS AT VARIOUS PICK-UP POINTS.
 - 4.07
- APPROXIMATELY 320,000 GALLONS PER YEAR FROM THE WASTE OILS CARLYLE COMPRESSOR COMPANY. (CONTRACTOR TO PROVIDE CONTAINER FOR COLLECTION.)
 - WATER EMULSION PAINT 4.08
 - APPROXIMATELY 4,000 GALLONS PER YEAR OF WATER BASE PAINT IN DRUMS FROM THE CARLYLE COMPRESSOR PLANT.
- PICK UP PROCEDURE 5.00
- ALL PICK UPS WILL BE MADE UPON THE REQUEST OF THE OWNER.
 - THE CONTRACTOR WILL RECEIVE 24-HOUR NOTICE THAT A PICK 5.01 UP IS TO BE MADE.

. 2 -

5.00 PICK UP PROCEDURE (CONTINUED)

- THE STORAGE CAPACITY OF THE WASTE COOLANT PIT AND THE ACID AND ALKALI PIT, BOTH LOCATED NORTH OF BUILDING TR-6, IS 20,000 GALLONS EACH. ALSO, THE STORAGE CAPACITY OF THE TWO (2) PITS WEST OF BUILDING TR-1, WHICH WILL BE USED FOR ACIDS AND ALKALI ONLY, IS 8,000 GALLONS EACH.
- 5.04 THE CONTRACTOR SHALL HAVE THE RESPONSIBILITY OF PUMPING BOTH THE MIXED ACID AND ALKALI AND THE COOLANT FROM THE PITS INTO THE HAULING VEHICLE.
- 5.05 THE CONTRACTOR SHALL PICK UP DRUMS OF LIQUID WASTES IN LOTS OF 40 PER TRUCK LOAD. CONTRACTOR SHALL SEE THAT BUNGS ARE IN PLACE AND THAT OPEN END DRUMS ARE COVERED BEFORE HANDLING AND TRANSPORTING TO ELIMINATE SPILLAGE.
- 5.06 AT THE TIME OF EACH PICK UP, A THREE-PART DELIVERY TIC-KET SUPPLIED BY THE CONTRACTOR SHALL BE SIGNED BY THE DRIVER AND AN AUTHORIZED REPRESENTATIVE OF THE OWNER WITH DISTRIBUTION AS FOLLOWS:
 - 1 COPY OWNER INFORMATION
 - 1 COPY CONTRACTOR TO BE SUBMITTED TO THE OWNER'S ACCOUNTS PAYABLE DEPARTMENT ALONG WITH MONTHLY INVOICE
 - 1 COPY CONTRACTOR INFORMATION

6.00 DISPOSAL

- 6.01 THE CONTRACTOR SHALL HAVE THE RESPONSIBILITY FOR THE LAWFUL DISPOSAL OF ALL INDUSTRIAL LIQUID WASTES THAT HE PICKS UP.
- 6.02 THE OWNER RESERVES THE RIGHT TO TERMINATE THE CONTRACT IF UNLAWFUL DISPOSAL METHODS ARE USED.

7.00 HOUSEKEEPING

7.01 IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO CLEAN UP ANY SPILLS CAUSED BY THE CONTRACTOR IN THE REMOVAL OF THE INDUSTRIAL LIQUID WASTES.

BIDDERS QUOTATION 8.00

8.01 ALL QUOTATIONS WILL BE SENT DIRECTLY TO:

CARRIER CORPORATION THOMPSON ROAD SITE PURCHASING DEPARTMENT, BUILDING TR-1 POST OFFICE BOX 4801 SYRACUSE, NEW YORK 13221

ATTENTION: MR. A. F. DRAZEK

- THEY ARE TO BE IN THE HANDS OF MR. DRAZEK BY FRIDAY, 1.02 MARCH 17, 1978.
- EACH BIDDER SHALL SUBMIT THE FOLLOWING INFORMATION FOR THE REMOVAL AND DISPOSAL OF ALL WASTES: 8.03
 - PRICE PER GALLON STRAIGHT TIME PICK-UP;
 - PRICE PER GALLON EVENING PICK-UP; В.
 - PRICE PER GALLON WEEKEND PICK-UP;
 - THE CAPACITY IN GALLONS OF THE PICK-UP VEHICLE;
 - PRICE (IF ANY) OF THE CONTRACTOR-FURNISHED CONTAINER FOR THE COLLECTING OF WASTE OILS AT THE CARLYLE COMPRESSOR COMPANY AS STATED IN SECTION 4.07.
 - A BIDDER MAY SUBMIT A QUOTATION FOR THE REMOVAL OF ALL OR PART OF THE LIQUID WASTES. 8.04

9.00 INSURANCE

- THE SUCCESSFUL CONTRACTOR SHALL SUPPLY THE OWNER WITH CERTIFICATES OF INSURANCE COVERAGE FOR THE FOLLOWING 9.01 AMOUNTS, PRIOR TO THE START OF WORK:
 - STATUTORY NEW YORK STATE WORKMEN'S COMPENSATION;
 - GENERAL LIABILITY INSURANCE -

- \$100,000 EACH PERSON EACH ACCIDENT - \$300,000 · BODILY INJURY: _ \$ 50,000 EACH ACCIDENT PROPERTY DAMAGE:

C. VEHICLE LIABILITY INSURANCE -

- \$100,000 EACH PERSON BODILY INJURY: EACH ACCIDENT - \$300,000

EACH ACCIDENT - \$ 50,000 PROPERTY DAMAGE:

ecology and environment

INDUSTRIAL LIQUID WASTE INVENTORY

NOTE: OWNER WILL PROVIDE SAMPLES AS REQUIRED BY CONTRACTOR

	OWNER WILL	MANTITY	FREQUENCY I	PICK-UP POINT	CONTAINER	DESCRIPTIVE ANALYSIS MIX OF EQUAL VOLUMES OF	ACID AND CAUSTIC
TEM A.	MIXED ACIDS AND ALKALIS	50,000	(1) 3500-1	CONCRETE PITS (WEST OF TR-1)	PUMPER	MIX OF EQUAL VOLUMES SULFURIC ACID (10%) 6 ALKALI CLEANER (N40H - 20 OZ./GAL.). DUMPED ACID CONTAINS 5% BY WEIGHT IRON; CLEANER CONTAINS META SILI- CATES AND ROSIN TYPE SOAPS.	ARE DUMPED AT THE SAME TIME. REACTION RESULTS IN SLUDGES (SULFATES) WHICH MUST BE REMOVED ONCE PER YEAR.
18.	MIXED ACIDS AND ALKALIS	100,000 GAL/YEAR	(2) 3500- GALLON TRAILERS/ MONTH	NORTH CON- CRETE PIT (NORTH OF TR-6)	CONTRACTOR TRAILER & PUMPER	MIX OF ACIDIC AND ALKA- LINE TYPE CLEANERS. AP- PROXIMATELY 70% BY VOL- UME IS INHIBITED PHOS- PHORIC ACID AND SODIUM	PHATES, ETC.) WHICH MUST BE REMOVED. ANNUALLY
-		400,000	(10) 3500-	SOUTH CON- CRETE PIT	TRAILER -	PHOSPHATES, NITRITES, SILICATES, ETC. MIXTURE OF WATER EMUL- SION COOLANTS, SUCH AS	COOLANTS DUMPED INTO SOUTH PIT ALONG WITH KERO-
2.	SOLUBLE COOLANT	GA/YEAR		(NORTH OF TR-6)	PUMPER	WATER TO 1 PART COOLAN	- CONTRACTOR TO
3.	SOLVENT AND THINNERS	500 GAL/YE	(3) 55- GALLON DRUMS ONCE PER MONTH3 TIMES PE	1	S5-GAL. STEEL DRU WITH BUNG	MEK, ETC.) WITH LESS	OF 40 DRUMS OF LIQUID WASTES

INDUSTRIAL LIQUID WASTE INVENTORY (CONTINUED)

4.	SOLVENE	PHIQUANTITY	FREQUENCY	PICK-UP POIN	TCONTAINER	DESCRIPTION	
1"	BASE	1,000 GAL/YEAR	1647 EE	DRUM STORAGE	55-GAL	WAGE ANALYSIS	REMARKS
5.	PAINT		DRUMS EVERY 3 MONTHS	& DISPOSAL COLLECTION AREA	ISTEFI DOL	PAINTS APPROXIMATELY SOL SOLIDS, SOL THINNE FROM FLOWCOAT TANK CLEANING OR FROM ROOM	PICK UP WHEN MIXED QUANTITY OF 40 DRIME OF
, ·	SOLDER FLUX	GAL/YEAR	(3) 55- GALLON	DRUM STORAGE	55-GAL.	200	ACCUMULATE.
6.	Llows			& DISPOSAL COLLECTION AREA	STEEL DRUM WITH PLAS- TIC LINER	70% FLUX & 30% N-PROPYL ALCOHOL, FLUX CONTAINS CHLORIDE & FLUORIDE SALTS.	PICK UP WHEN MIXED QUANTITY OF LIQUID WASTE
- 1	LIQUID SLUDGES MISC.	GAL/YEAR (2,000 GALLONS PER MONTH	CONCRETE PITS DRUM STORAGE	OPEN END	APPROXIMATELY 50% SLUDGE CONSISTS OF	DRUMS CONTAINING
Э	ज्ञासम्बद्धाः । जन्म	·		AREA		SALTS IN CONCRETE PITS, 50% SLUDGE OF PHOSPHATE	COVERED BY CON- TRACTOR BEFORE
7. <u>H</u>	ASTE OILS	320,000 (HERRERHEREN ER	************	PHATING MACHINE.ALSO, MISCELLANEOUS SLUDGES. RENEWERENEEUS SLUDGES. RENEWERENEEUS SAMER FAMER	• . •
		, jir	ALLON CO RAILERS CO	140 4444	ONTAINER I	TEM NUMBER 2 CONTAMI-	CONTRACTOR TO PROVIDE AND SPOT
. WA	TER 4	,000 4.6	300 641 600	l de la	Ε	OI LI AF	N SITE FOR COL- ECTING OF WASTES
EM	ULS TON GA	AL/YEAR ONG		PRESSOR STI	-GAL. EEL DRUM RE TH BUNGS WA	PPROXIMATELY 7% OF PA ESINS AND PIGMENT IN FR CO.	INT IS PUMPED OM ELECTRO ATING MACHINE
						· Jone	PROXIMATELY CE.PER YEAR. TEM BECOMES

C-44

CITY OF NEW YORK,

85 Civ. 1939 (KC)

EXXON, et. al.

AFFIDAVIT OF JOSEPH S. PETA

STATE OF FLORIDA)

COUNTY OF MARION)

JOSEPH S. PETA, being duly sworn, deposes and says as follows:

- 1. I reside at 906 Second Street, Liverpool, New York
 13088. During the winter, I live at 302 Oak Track Way, Ocala,
 Florida 32672. I am over 21 years of age.
- 2. I make this affidavit on the basis of personal knowledge. I do so in order to set forth my knowledge of the disposal of certain Carrier Corporation wastes in the 1970s.
- alled Joseph S. Peta Trucking at 3641 Hayes Road, Liverpool, New York. Liverpool is a suburb of Syracuse. My company was a small trucking and construction concern specializing in the delivery of sand, gravel, and topsoil. We had several dump trucks and backhoes, and fewer than ten employees, including myself and my son, John M. Peta.
 - 4. For insurance reasons, we operated almost exclusively in the Syracuse area. Our insurance policies in force through

the 1970s required us to operate within a fifty-mile radius of our office in Liverpool.

- 5. At some time in the early 1970s, Northeast Oil in Syracuse hired my company to pick up drummed waste from Carrier Corporation's Thompson Road manufacturing plant in Dewitt, New York, a suburb of Syracuse. This arrangement lasted until 1979. At no time did I or my company pick up drums from Carrier's Carlyle Compressor plant.
- 6. Pursuant to my subcontract with Northeast, I and my son or another employee would drive to the Thompson Road plant to pick up the drums for which Northeast was responsible under purchase orders from Carrier. We made these pick-ups as many as several times a year from 1974 until some time in 1979. (I believe Northeast later changed its name to Hudson Refining.)
- 7. We used dump trucks to carry the drums. Carrier employees used forklifts to load them in our trucks. The drums were normally sealed.
 - 8. On no occasion did we pump out the drums at Carrier. We had neither the pumping equipment to do so nor a tanker truck to hold the materials in the drums.
 - 9. We brought the drums back to our property in Liverpool where we sorted them according to their condition. Most of the drums could not be returned to service. These drums were taken, still full, to the Town of Salina landfill and lawfully disposed of with their contents. (Salina is a Syracuse suburb.) We sold the remaining drums for use as floats and for other marine

in the Salina landfill before we sold these drums. To my knowledge, such disposal was lawful.

- 10. On no occasion did I, my son, or any employee of mine ever transport drummed wastes from Carrier or anything else to any New York City landfill.
- 11. On no occasion did I, my son, or any employee of mine ever transport drummed wastes from Carrier or anything else to Hi-Way Auto Service in Pittston, Pennsylvania.
- ever transport drummed wastes from Carrier or anything else to the waste oil refineries located at Review Avenue, in Long Island City, New York, or located on River Road, in Edgewater, New Jersey.
- ever transport Carrier's drummed wastes or anything else from Carrier to the waste oil refinery on Lodi Street in Syracuse or any other Northeast facility. On no occasion did any truck from Northeast Oil or any other concern pump out any of the drums my company had picked up from Carrier.

7

eph S. Pet

Subscribed to and sworn before

me this 26th day of

February, 1988

Notary Public

Hoters Paris, State of Florida
My Cetin Line Expres Sopt. 9, 1990

CITY OF NEW YORK,

v.

85 Civ. 1939 (KC)

EXXON, et. al.

DECLARATION OF JOHN M. PETA

JOHN M. PETA, pursuant to 28 U.S.C. §1746, makes the following declaration under penalty of perjury:

- 1. I reside at 302 Oak Track Way, Ocala, Florida 32672.

 I am over 21 years of age.
- 2. I make this declaration on the basis of personal knowledge. I do so in order to set forth my knowledge of the disposal of certain Carrier Corporation wastes in the 1970s.
- 3. During the 1970s, I worked for a business called Joseph S. Peta Trucking located at 3641 Hayes Road, Liverpool, New York. Liverpool is a suburb of Syracuse. This company was owned and operated by my father, Joseph S. Peta. It was a small trucking and construction concern specializing in delivery of sand, gravel, and topsoil. We had several dump trucks and backhoes, and fewer than ten employees, including myself and my father, Joseph S. Peta.
 - 4. For insurance reasons, we operated almost exclusively in the Syracuse area. Our insurance policies in force through the 1970s required us to operate within a fifty mile radius of our office in Liverpool.

- 5. At some time in the early 1970s, Northeast Oil in Syracuse hired my father's company to pick up drummed waste from Carrier Corporation's Thompson Road manufacturing plant in Dewitt, New York, a suburb of Syracuse. This arrangement lasted until some time in 1979. At no time did my father's company pick up drums from Carrier's Catlyle Compressor plant.
 - 6. Pursuant to the subcontract with Northeast, I and my father or another employee would drive to the Thompson Road plant to pick up the drums for which Northeast was said to be responsible under its purchase orders from Carrier. We made these pick-ups as many as several times a year from 1974 until these pick-ups as many as several times a year from 1974 until 1979. (I believe Northeast later changed its name to Hudson Refining.)
 - 7. We used dump trucks to carry the drums. Carrier employees used forklifts to load them in our trucks.
 - 8. On no occasion did we pump out the drums at Carrier. We had neither the pumping equipment to do so nor a tanker truck to hold the materials in the drums.
 - where we sorted them according to their condition. Most of the drums could not be returned to service. These drums were taken, still full, to the Town of Salina landfill and disposed of there with their contents. (Salina is a Syracuse suburb.) We sold the remaining drums for use as floats and for other marine applications. We usually disposed of the contents of these drums in the Salina landfill before we sold these drums. To my knowledge, such disposal was lawful.

- 10. On no occasion did I, my father, or any employee of my father's company ever transport drummed wastes from Carrier or anything else to any New York City landfill.
- 11. On no occasion did I, my father, or any employee of my father's company ever transport drummed wastes from Carrier or anything else to Hi-Way Auto Service in Pittston, Pennsylvania.
- 12. On no occasion did I, my father, or any employee of my father's company ever transport drummed wastes from Carrier or anything else to the waste oil refineries located at Review Avenue, in Long Island City, New York, or located on River Road, in Edgewater, New Jersey.
- 13. On no occasion did I, my father, or any employee of my father's company ever transport Carrier's drummed wastes or anything else from Carrier to the waste oil refinery on Lodi Street in Syracuse or any other Northeast facility. On no occasion did any truck from Northeast Oil or any other concern pump out any of the drums my father's company had picked up from Carrier.

Pursuant to 28 U.S.C. § 1745, I declare under penalty of perjury that the foregoing is true and correct.

1. 1,7 2 X.

John M. Peta

Date: March 3, 1988

Ocala, Florida